Juego de práctica para silogismo

Silogismo:

El silogismo es una parte esencial de todos los trabajos que contienen preguntas de aptitud. Generalmente es parte de los exámenes competitivos en la sección de habilidad de razonamiento, juega un papel vital en los exámenes compartiendo 3 o 4 puntos del total de puntos. Hay muchas formas de llegar a la solución final de las cuestiones de silogismos. El método más popular y fácil de usar de todos es usar un diagrama de Venn. Con base en las declaraciones dadas en la pregunta, se deben dibujar todos los diagramas posibles y se tomará uno con la mínima superposición. Finalmente, se considerarán las opciones que satisfagan todas las condiciones según el diagrama de Venn.

Puntos importantes a recordar:

  • Solo A es B se puede reescribir como «Todos los B son A»
  • Solo unos pocos A son B pueden escribirse como «Algunos A son B» así como «Algunos A no son B». Esto significa que una parte de A está fija en el sentido de que está relacionada con B, pero el resto de A no tiene relación con B.

Dirección: en la siguiente pregunta, se dan algunas conclusiones y se dan algunas afirmaciones, debe tomar las conclusiones dadas como verdaderas, incluso si parecen estar en desacuerdo con los hechos comúnmente conocidos y luego decidir cuál de las afirmaciones dadas en las opciones hacen la conclusión dada la afirmación es definitivamente verdadera.

1- Conclusiones:

  • Todos los tomates siendo hongos es una posibilidad.
  • Todo repollo siendo hongo es una posibilidad.

1. Enunciado-I: Todas las coles son tomate. Ningún tomate es hongo. Todos los frijoles son hongos.

2. Declaración-II: Todas las coles son tomate. Ningún tomate es Frijoles. Todos los frijoles son hongos.

3. Declaración-III: Algunas coles son tomate. Ningún tomate es hongo. Todos los frijoles son hongos.

4. Declaración-IV: Ningún repollo es un hongo. Ningún tomate es frijol. Todos los frijoles son hongos.

5. Declaración-V: Algunas coles son tomate. Ningún tomate es frijol. Ningún repollo es un hongo.

Responder: 

No necesitamos una relación directa entre los tomates y los hongos según la primera conclusión. Igual que en la segunda conclusión, no hay una relación directa entre el repollo y los hongos, por lo que obtenemos una relación de posibilidad.

Declaración-I : Todas las coles son tomate. Ningún tomate es hongo . Todos los frijoles son hongos. (La relación directa está presente, no obtendremos un caso de posibilidad de esta declaración)

Declaración-II: Todas las coles son tomate. Ningún tomate es Frijoles. Todos los frijoles son hongos.

 

Del diagrama de Venn anterior, podemos decir claramente que las conclusiones primera y segunda siguen a esta afirmación.

Declaración-III: Algunas coles son tomate. Ningún tomate es hongo . Todos los frijoles son hongos. (La relación directa está presente, no obtendremos un caso de posibilidad de esta declaración)

Declaración-IV: Ningún repollo es un hongo . Ningún tomate es frijol. Todos los frijoles son hongos. (La relación directa está presente, no obtendremos un caso de posibilidad de esta declaración)

Declaración-V: Algunas coles son tomate. Ningún tomate es frijol. Ningún repollo es un hongo . (La relación directa está presente, no obtendremos un caso de posibilidad de esta declaración)

2- Conclusiones:

  • Todo móvil siendo gramófono es una posibilidad.
  • Ningún móvil es FM rojo.
  • Algunos automóviles son móviles es una posibilidad.

1. Declaración-I: Todos los móviles son acondicionadores. No hay acondicionador son gramófono. Algunos gramófonos son automóviles.

2. Declaración-II: Ningún móvil es gramófono. Ningún acondicionador es FM rojo. Algunos gramófonos son automóviles. Algunos FM rojos son automóviles.

3. Declaración-III: Todos los móviles son acondicionadores. Todo acondicionador es rojo FM. Algunos FM rojos son gramófonos. Algunos gramófonos son automóviles. Algunos automóviles son transistores.

4. Declaración-IV: Todos los móviles son acondicionadores. Ningún acondicionador es FM rojo. Todas las FM rojas son gramófonos. Algunos gramófonos. son automóviles. Algunos automóviles no son transistores.

5. Declaración-V: Algunos móviles no son acondicionadores. Todos los acondicionadores son FM rojos. Algunos FM rojos no son gramófonos son automóviles. Algunos automóviles son transistores.

Responder: 

Necesitamos una relación indirecta (caso de posibilidad) entre móvil y gramófono y automóviles y móvil. Y relación directa (sin caso) entre Móvil y red FM.

Declaración-I: Todos los móviles son acondicionadores. No hay acondicionador son gramófono. Algunos gramófonos son automóviles.

Obtendremos una relación directa entre el móvil y el gramófono, por lo que aquí la posibilidad de que el caso no esté presente.

Declaración-II: Ningún móvil es gramófono . Ningún acondicionador es FM rojo. Algunos gramófonos son automóviles. Algunos FM rojos son automóviles.

Obtendremos una relación directa entre el móvil y el gramófono, por lo que aquí la posibilidad de que el caso no esté presente.

Declaración-III: Todos los móviles son acondicionadores. Todo el acondicionador es FM rojo . Algunos FM rojos son gramófonos. Algunos gramófonos son automóviles. Algunos automóviles son transistores.

Conseguimos que todo móvil sea FM rojo. Así que la segunda conclusión no es satisfactoria.

Declaración-IV: Todos los móviles son acondicionadores. Ningún acondicionador es FM rojo. Todas las FM rojas son gramófonos. Algunos gramófonos. son automóviles. Algunos automóviles no son transistores.

Toda la conclusión se satisface con esta afirmación:

 

Declaración-V: Algunos móviles no son acondicionadores. Todos los acondicionadores son FM rojos. Algunos FM rojos no son gramófonos. Algunos gramófonos son automóviles. Algunos automóviles son transistores.

No estamos obteniendo la segunda conclusión correcta de acuerdo con la afirmación dada de que ningún móvil es FM rojo.

3 Conclusiones:

  • Algunas naranjas son triángulo es una posibilidad.
  • Algunos centro son figura
  • Algunos centro son naranjas
  • Algunas figuras son fanta.

1. Enunciado-I: Todos los triángulos son fanta. No fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

2. Declaración-II: Ningún triángulo es fanta. No fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

3. Declaración-III: Algunos triángulos son fanta. Algunas fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

4. Declaración-IV: Algunos triángulos son fanta. Algunas fanta son naranjas. Ninguna naranja es figura. Ninguna figura es el centro.

5. Declaración-V: Algunos triángulos son fanta. Algunas fanta son naranjas. Algunas naranjas es figura. Alguna figura es el centro.

Responder: 

Declaración-I: Todos los triángulos son fanta. No fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

La primera conclusión no es seguir con la declaración dada.

Declaración-II: Ningún triángulo es fanta. No fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

La cuarta conclusión no sigue la declaración dada.

Declaración-III: Algunos triángulos son fanta. Algunas fanta son naranjas . Todas las naranjas son figura. Todas las figuras son el centro.

La primera conclusión no es seguir con la declaración dada.

Declaración-III: Algunos triángulos son fanta. Algunas fanta son naranjas. Todas las naranjas son figura. Todas las figuras son el centro.

Toda la conclusión sigue con la declaración dada.

 

Declaración-IV: Algunos triángulos son fanta. Algunas fanta son naranjas. Ninguna naranja es figura. Ninguna figura es el centro .

La segunda conclusión no sigue con la declaración dada.

Declaración-V: Algunos triángulos son fanta. Algunas fanta son naranjas. Algunas naranjas es figura. Alguna figura es el centro .

La tercera conclusión es no seguir con la declaración dada.

4. Conclusiones:

  • Algunas águilas están siendo ganado es una posibilidad.
  • Algún juguete está siendo águila es una posibilidad.

1. Declaración-I: Todo el ganado es burro. Algunas águilas son burros. Ningún juguete es águila.

2. Declaración-II: Todo el ganado es burro. Ningún águila es burro. Todos los juguetes son ganado.

3. Declaración-III: Algunas reses son burros. Algunas águilas son burros. Ningún juguete es águila.

4. Declaración-IV: Algunas reses son burros. Algunas águilas son burros. Algún juguete es águila.

5. Declaración-V: Algunas reses son burros. Algunas águilas son burros. Todo el juguete es águila.

Responder: 

Declaración-I: Todo el ganado son burros. Algunas águilas son burros. Ningún juguete es águila.

La segunda conclusión no sigue con la declaración dada.

Declaración-II: Todo el ganado son burros. Ningún águila es burro. Todos los juguetes son ganado.

La primera conclusión no es seguir con la declaración dada.

Declaración-III: Algunas reses son burros. Algunas águilas son burros. Ningún juguete es águila.

La segunda conclusión no sigue con la declaración dada.

Declaración-IV: Algunas reses son burros. Algunas águilas son burros. Algún juguete es águila.

La segunda conclusión no sigue con la declaración dada.

Declaración-V: Algunas reses son burros. Algunas águilas son burros. Todo juguete es ganado.

Todas las conclusiones siguen la declaración dada.

 

Dirección (5-10): En cada una de las siguientes preguntas se dan dos o tres afirmaciones seguidas de dos conclusiones. Tienes que tomar las afirmaciones dadas como verdaderas incluso si parecen estar en desacuerdo con los hechos comúnmente conocidos. Lea la conclusión y luego decida cuál de las conclusiones dadas sigue lógicamente a las declaraciones.

Respuesta dada:

  • Opción A: si solo se sigue una (1) conclusión
  • Opción B: si solo se sigue una (2) conclusión
  • Opción C: si se sigue una conclusión (1) o (2)
  • Opción D- Si no se sigue ninguna conclusión (1) ni (2)
  • Opción E- Si ambas conclusiones (1) y (2) siguen

5- Enunciado:  Solo unos pocos niños son amantes de las frutas. Ningún amante de la fruta es justo. Todos los justos son amantes de los perros.

   Conclusión: 

  1. Todo amante de la fruta es niños es una posibilidad.
  2. Todas las ferias son amantes de los perros es una posibilidad.

Respuesta: Opción A

Según la declaración, solo unos pocos niños son amantes de las frutas, por lo que todos los amantes de las frutas pueden ser niños, pero no todos los niños pueden ser amantes de las frutas.

 

6- Enunciado:  Solo los rosas son rojos. Algunos rosas son violetas. Algunas violetas no son negras.

  Conclusión:

  1. Todo negro siendo rojo es una posibilidad.
  2. Algunos negros son rosas es una posibilidad.

Respuesta: Opción B

Según el comunicado, está claro que el rojo tiene relación solo con el rosa.

 

7- Enunciado: Todos los árboles son ramas. Algunas ramas son raíz. Solo unas pocas raíces son vapor.

  Conclusión:

  1. Todo el vapor no son ramas.
  2. Alguna raíz siendo árbol es una posibilidad.

Respuesta: Opción B

 

8- Declaración: Toda la casa es genial. Sólo unos pocos hombres son mujeres. Ninguna mujer es niña

 Conclusión:

  1. La única casa es niño
  2. Solo los hombres son mujeres.

Respuesta: Opción D

Según el enunciado, el niño no tiene sólo una relación con la casa, puede tener una relación con otros objetos. La misma condición se aplica a la conclusión segunda.

9- Enunciado: Sólo la pluma es tinta. Algún rifle es un pentágono. Ningún pentágono es hexágono.

Conclusión:

  1. Algún hexágono no es tinta.
  2. Algún hexágono no es tinta es una posibilidad.
  3. Todo hexágono es tinta es una posibilidad.

Respuesta: Opción A

Según el comunicado, la tinta solo tiene relación con la pluma. Resto todos los objetos no pueden tener una relación con la tinta. Así que la primera conclusión es correcta.

10- Enunciado: Todas las Verduras son verdes. Todo lo verde son hojas. Ninguna hoja es flor. Sólo unas pocas flores es capullo.

Conclusión:

  1. Todos los brotes son Vegetales.
  2. Sólo unos pocos vegetales son flores.
  3. Sólo el verde es capullo.

Respuesta: Opción D

 

Publicación traducida automáticamente

Artículo escrito por manjari20december y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *