Esta es la variación de Rat en Maze
A Maze se da como N*N array binaria de bloques donde el bloque de origen es el bloque superior izquierdo, es decir, maze[0][0] y el bloque de destino es el bloque inferior derecho, es decir, maze[N -1][N-1]. Una rata parte de la fuente y tiene que llegar al destino. La rata solo puede moverse en dos direcciones: hacia adelante y hacia abajo.
En la array del laberinto, 0 significa que el bloque es un callejón sin salida y un número distinto de cero significa que el bloque se puede utilizar en la ruta desde el origen hasta el destino. El valor distinto de cero de mat[i][j] indica el número máximo de saltos que la rata puede hacer desde la celda mat[i][j].
En esta variación, Rat puede saltar varios pasos a la vez en lugar de 1.
Ejemplos:
Input : { {2, 1, 0, 0}, {3, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1} } Output : { {1, 0, 0, 0}, {1, 0, 0, 1}, {0, 0, 0, 1}, {0, 0, 0, 1} } Explanation Rat started with M[0][0] and can jump upto 2 steps right/down. Let's try in horizontal direction - M[0][1] won't lead to solution and M[0][2] is 0 which is dead end. So, backtrack and try in down direction. Rat jump down to M[1][0] which eventually leads to solution. Input : { {2, 1, 0, 0}, {2, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1} } Output : Solution doesn't exist
Algoritmo ingenuo
El algoritmo ingenuo es generar todas las rutas desde el origen hasta el destino y verificar una por una si la ruta generada cumple con las restricciones.
while there are untried paths { generate the next path if this path has all blocks as non-zero { print this path; } }
Algoritmo de retroceso
If destination is reached print the solution matrix Else a) Mark current cell in solution matrix as 1. b) Move forward/jump (for each valid steps) in horizontal direction and recursively check if this move leads to a solution. c) If the move chosen in the above step doesn't lead to a solution then move down and check if this move leads to a solution. d) If none of the above solutions work then unmark this cell as 0 (BACKTRACK) and return false.
Implementación de la solución Backtracking
C++
/* C/C++ program to solve Rat in a Maze problem using backtracking */ #include <stdio.h> // Maze size #define N 4 bool solveMazeUtil(int maze[N][N], int x, int y, int sol[N][N]); /* A utility function to print solution matrix sol[N][N] */ void printSolution(int sol[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) printf(" %d ", sol[i][j]); printf("\n"); } } /* A utility function to check if x, y is valid index for N*N maze */ bool isSafe(int maze[N][N], int x, int y) { // if (x, y outside maze) return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] != 0) return true; return false; } /* This function solves the Maze problem using Backtracking. It mainly uses solveMazeUtil() to solve the problem. It returns false if no path is possible, otherwise return true and prints the path in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.*/ bool solveMaze(int maze[N][N]) { int sol[N][N] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; if (solveMazeUtil(maze, 0, 0, sol) == false) { printf("Solution doesn't exist"); return false; } printSolution(sol); return true; } /* A recursive utility function to solve Maze problem */ bool solveMazeUtil(int maze[N][N], int x, int y, int sol[N][N]) { // if (x, y is goal) return true if (x == N - 1 && y == N - 1) { sol[x][y] = 1; return true; } // Check if maze[x][y] is valid if (isSafe(maze, x, y) == true) { // mark x, y as part of solution path sol[x][y] = 1; /* Move forward in x direction */ for (int i = 1; i <= maze[x][y] && i < N; i++) { /* Move forward in x direction */ if (solveMazeUtil(maze, x + i, y, sol) == true) return true; /* If moving in x direction doesn't give solution then Move down in y direction */ if (solveMazeUtil(maze, x, y + i, sol) == true) return true; } /* If none of the above movements work then BACKTRACK: unmark x, y as part of solution path */ sol[x][y] = 0; return false; } return false; } // driver program to test above function int main() { int maze[N][N] = { { 2, 1, 0, 0 }, { 3, 0, 0, 1 }, { 0, 1, 0, 1 }, { 0, 0, 0, 1 } }; solveMaze(maze); return 0; }
Java
// Java program to solve Rat in a Maze problem // using backtracking class GFG { // Maze size static int N = 4; /* A utility function to print solution matrix sol[N][N] */ static void printSolution(int sol[][]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { System.out.printf(" %d ", sol[i][j]); } System.out.printf("\n"); } } /* A utility function to check if x, y is valid index for N*N maze */ static boolean isSafe(int maze[][], int x, int y) { // if (x, y outside maze) return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] != 0) { return true; } return false; } /* This function solves the Maze problem using Backtracking. It mainly uses solveMazeUtil() to solve the problem. It returns false if no path is possible, otherwise return true and prints the path in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.*/ static boolean solveMaze(int maze[][]) { int sol[][] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; if (solveMazeUtil(maze, 0, 0, sol) == false) { System.out.printf("Solution doesn't exist"); return false; } printSolution(sol); return true; } /* A recursive utility function to solve Maze problem */ static boolean solveMazeUtil(int maze[][], int x, int y, int sol[][]) { // if (x, y is goal) return true if (x == N - 1 && y == N - 1) { sol[x][y] = 1; return true; } // Check if maze[x][y] is valid if (isSafe(maze, x, y) == true) { // mark x, y as part of solution path sol[x][y] = 1; /* Move forward in x direction */ for (int i = 1; i <= maze[x][y] && i < N; i++) { /* Move forward in x direction */ if (solveMazeUtil(maze, x + i, y, sol) == true) { return true; } /* If moving in x direction doesn't give solution then Move down in y direction */ if (solveMazeUtil(maze, x, y + i, sol) == true) { return true; } } /* If none of the above movements work then BACKTRACK: unmark x, y as part of solution path */ sol[x][y] = 0; return false; } return false; } // Driver Code public static void main(String[] args) { int maze[][] = {{2, 1, 0, 0}, {3, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1}}; solveMaze(maze); } } // This code is contributed by Princi Singh
Python3
""" Python3 program to solve Rat in a Maze problem using backtracking """ # Maze size N = 4 """ A utility function to print solution matrix sol """ def printSolution(sol): for i in range(N): for j in range(N): print(sol[i][j], end = " ") print() """ A utility function to check if x, y is valid index for N*N maze """ def isSafe(maze, x, y): # if (x, y outside maze) return false if (x >= 0 and x < N and y >= 0 and y < N and maze[x][y] != 0): return True return False """ This function solves the Maze problem using Backtracking. It mainly uses solveMazeUtil() to solve the problem. It returns false if no path is possible, otherwise return True and prints the path in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.""" def solveMaze(maze): sol = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] if (solveMazeUtil(maze, 0, 0, sol) == False): print("Solution doesn't exist") return False printSolution(sol) return True """ A recursive utility function to solve Maze problem """ def solveMazeUtil(maze, x, y, sol): # if (x, y is goal) return True if (x == N - 1 and y == N - 1) : sol[x][y] = 1 return True # Check if maze[x][y] is valid if (isSafe(maze, x, y) == True): # mark x, y as part of solution path sol[x][y] = 1 """ Move forward in x direction """ for i in range(1, N): if (i <= maze[x][y]): """ Move forward in x direction """ if (solveMazeUtil(maze, x + i, y, sol) == True): return True """ If moving in x direction doesn't give solution then Move down in y direction """ if (solveMazeUtil(maze, x, y + i, sol) == True): return True """ If none of the above movements work then BACKTRACK: unmark x, y as part of solution path """ sol[x][y] = 0 return False return False # Driver Code maze = [[2, 1, 0, 0], [3, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]] solveMaze(maze) # This code is contributed by SHUBHAMSINGH10
C#
// C# program to solve Rat in a Maze problem // using backtracking using System; class GFG { // Maze size static int N = 4; /* A utility function to print solution matrix sol[N, N] */ static void printSolution(int [,]sol) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { Console.Write(" {0} ", sol[i, j]); } Console.Write("\n"); } } /* A utility function to check if x, y is valid index for N*N maze */ static Boolean isSafe(int [,]maze, int x, int y) { // if (x, y outside maze) return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x, y] != 0) { return true; } return false; } /* This function solves the Maze problem using Backtracking. It mainly uses solveMazeUtil() to solve the problem. It returns false if no path is possible, otherwise return true and prints the path in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.*/ static Boolean solveMaze(int [,]maze) { int [,]sol = {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}; if (solveMazeUtil(maze, 0, 0, sol) == false) { Console.Write("Solution doesn't exist"); return false; } printSolution(sol); return true; } /* A recursive utility function to solve Maze problem */ static Boolean solveMazeUtil(int [,]maze, int x, int y, int [,]sol) { // if (x, y is goal) return true if (x == N - 1 && y == N - 1) { sol[x, y] = 1; return true; } // Check if maze[x,y] is valid if (isSafe(maze, x, y) == true) { // mark x, y as part of solution path sol[x, y] = 1; /* Move forward in x direction */ for (int i = 1; i <= maze[x, y] && i < N; i++) { /* Move forward in x direction */ if (solveMazeUtil(maze, x + i, y, sol) == true) { return true; } /* If moving in x direction doesn't give solution then Move down in y direction */ if (solveMazeUtil(maze, x, y + i, sol) == true) { return true; } } /* If none of the above movements work then BACKTRACK: unmark x, y as part of solution path */ sol[x, y] = 0; return false; } return false; } // Driver Code public static void Main(String[] args) { int [,]maze = {{2, 1, 0, 0}, {3, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1}}; solveMaze(maze); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript program to solve Rat in a Maze problem // using backtracking // Maze size let N = 4; /* A utility function to print solution matrix sol[N][N] */ function printSolution(sol) { for (let i = 0; i < N; i++) { for (let j = 0; j < N; j++) { document.write(sol[i][j] + " "); } document.write("<br/>"); } } /* A utility function to check if x, y is valid index for N*N maze */ function isSafe(maze, x, y) { // if (x, y outside maze) return false if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] != 0) { return true; } return false; } /* This function solves the Maze problem using Backtracking. It mainly uses solveMazeUtil() to solve the problem. It returns false if no path is possible, otherwise return true and print the path in the form of 1s. Please note that there may be more than one solutions, this function prints one of the feasible solutions.*/ function solveMaze(maze) { let sol = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]; if (solveMazeUtil(maze, 0, 0, sol) == false) { document.write("Solution doesn't exist"); return false; } printSolution(sol); return true; } /* A recursive utility function to solve Maze problem */ function solveMazeUtil(maze, x, y, sol) { // if (x, y is goal) return true if (x == N - 1 && y == N - 1) { sol[x][y] = 1; return true; } // Check if maze[x][y] is valid if (isSafe(maze, x, y) == true) { // mark x, y as part of solution path sol[x][y] = 1; /* Move forward in x direction */ for (let i = 1; i <= maze[x][y] && i < N; i++) { /* Move forward in x direction */ if (solveMazeUtil(maze, x + i, y, sol) == true) { return true; } /* If moving in x direction doesn't give solution then Move down in y direction */ if (solveMazeUtil(maze, x, y + i, sol) == true) { return true; } } /* If none of the above movements work then BACKTRACK: unmark x, y as part of solution path */ sol[x][y] = 0; return false; } return false; } // Driver code let maze = [[2, 1, 0, 0], [3, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]]; solveMaze(maze); // This code is contributed by splevel62. </script>
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
Publicación traducida automáticamente
Artículo escrito por Ajay Verma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA