Recorte de polígono | Algoritmo de Sutherland-Hodgman

Se dan un polígono convexo y un área de recorte convexa. La tarea es recortar los bordes de los polígonos usando el Algoritmo de Sutherland-Hodgman. La entrada tiene la forma de vértices del polígono en el sentido de las agujas del reloj .

Ejemplos:

// C++ program for implementing Sutherland–Hodgman
// algorithm for polygon clipping
#include<iostream>
using namespace std;
  
const int MAX_POINTS = 20;
  
// Returns x-value of point of intersection of two
// lines
int x_intersect(int x1, int y1, int x2, int y2,
                int x3, int y3, int x4, int y4)
{
    int num = (x1*y2 - y1*x2) * (x3-x4) -
              (x1-x2) * (x3*y4 - y3*x4);
    int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
    return num/den;
}
  
// Returns y-value of point of intersection of
// two lines
int y_intersect(int x1, int y1, int x2, int y2,
                int x3, int y3, int x4, int y4)
{
    int num = (x1*y2 - y1*x2) * (y3-y4) -
              (y1-y2) * (x3*y4 - y3*x4);
    int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
    return num/den;
}
  
// This functions clips all the edges w.r.t one clip
// edge of clipping area
void clip(int poly_points[][2], int &poly_size,
          int x1, int y1, int x2, int y2)
{
    int new_points[MAX_POINTS][2], new_poly_size = 0;
  
    // (ix,iy),(kx,ky) are the co-ordinate values of
    // the points
    for (int i = 0; i < poly_size; i++)
    {
        // i and k form a line in polygon
        int k = (i+1) % poly_size;
        int ix = poly_points[i][0], iy = poly_points[i][1];
        int kx = poly_points[k][0], ky = poly_points[k][1];
  
        // Calculating position of first point
        // w.r.t. clipper line
        int i_pos = (x2-x1) * (iy-y1) - (y2-y1) * (ix-x1);
  
        // Calculating position of second point
        // w.r.t. clipper line
        int k_pos = (x2-x1) * (ky-y1) - (y2-y1) * (kx-x1);
  
        // Case 1 : When both points are inside
        if (i_pos < 0  && k_pos < 0)
        {
            //Only second point is added
            new_points[new_poly_size][0] = kx;
            new_points[new_poly_size][1] = ky;
            new_poly_size++;
        }
  
        // Case 2: When only first point is outside
        else if (i_pos >= 0  && k_pos < 0)
        {
            // Point of intersection with edge
            // and the second point is added
            new_points[new_poly_size][0] = x_intersect(x1,
                              y1, x2, y2, ix, iy, kx, ky);
            new_points[new_poly_size][1] = y_intersect(x1,
                              y1, x2, y2, ix, iy, kx, ky);
            new_poly_size++;
  
            new_points[new_poly_size][0] = kx;
            new_points[new_poly_size][1] = ky;
            new_poly_size++;
        }
  
        // Case 3: When only second point is outside
        else if (i_pos < 0  && k_pos >= 0)
        {
            //Only point of intersection with edge is added
            new_points[new_poly_size][0] = x_intersect(x1,
                              y1, x2, y2, ix, iy, kx, ky);
            new_points[new_poly_size][1] = y_intersect(x1,
                              y1, x2, y2, ix, iy, kx, ky);
            new_poly_size++;
        }
  
        // Case 4: When both points are outside
        else
        {
            //No points are added
        }
    }
  
    // Copying new points into original array
    // and changing the no. of vertices
    poly_size = new_poly_size;
    for (int i = 0; i < poly_size; i++)
    {
        poly_points[i][0] = new_points[i][0];
        poly_points[i][1] = new_points[i][1];
    }
}
  
// Implements Sutherland–Hodgman algorithm
void suthHodgClip(int poly_points[][2], int poly_size,
                  int clipper_points[][2], int clipper_size)
{
    //i and k are two consecutive indexes
    for (int i=0; i<clipper_size; i++)
    {
        int k = (i+1) % clipper_size;
  
        // We pass the current array of vertices, it's size
        // and the end points of the selected clipper line
        clip(poly_points, poly_size, clipper_points[i][0],
             clipper_points[i][1], clipper_points[k][0],
             clipper_points[k][1]);
    }
  
    // Printing vertices of clipped polygon
    for (int i=0; i < poly_size; i++)
        cout << '(' << poly_points[i][0] <<
                ", " << poly_points[i][1] << ") ";
}
  
//Driver code
int main()
{
    // Defining polygon vertices in clockwise order
    int poly_size = 3;
    int poly_points[20][2] = {{100,150}, {200,250},
                              {300,200}};
  
    // Defining clipper polygon vertices in clockwise order
    // 1st Example with square clipper
    int clipper_size = 4;
    int clipper_points[][2] = {{150,150}, {150,200},
                              {200,200}, {200,150} };
  
    // 2nd Example with triangle clipper
    /*int clipper_size = 3;
    int clipper_points[][2] = {{100,300}, {300,300},
                                {200,100}};*/
  
    //Calling the clipping function
    suthHodgClip(poly_points, poly_size, clipper_points,
                 clipper_size);
  
    return 0;
}

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *