Dado un árbol binario y un Node en el árbol binario, encuentre el Predecesor de orden de nivel del Node dado. Es decir, el Node que aparece antes del Node dado en el recorrido de orden de nivel del árbol.
Nota : la tarea no es solo imprimir los datos del Node, debe devolver el Node completo del árbol.
Ejemplos :
Consider the following binary tree 20 / \ 10 26 / \ / \ 4 18 24 27 / \ 14 19 / \ 13 15 Levelorder traversal of given tree is: 20, 10, 26, 4, 18, 24, 27, 14, 19, 13, 15 Input : 19 Output : 14 Input : 4 Output : 26
Enfoque :
- Compruebe si la raíz es NULL, es decir, el árbol está vacío. Si es verdadero, devuelve NULL.
- Compruebe si el Node dado es raíz. Si es verdadero, entonces no habrá predecesor de root, por lo que devuelve NULL.
- De lo contrario, realice un cruce de orden de niveles en el árbol utilizando una cola y un puntero temporal anterior para mantener el último Node durante el recorrido.
- En cada paso del recorrido del orden de nivel, verifique si el Node actual coincide con el Node dado.
- Si es Verdadero, deje de recorrer más y devuelva el Node almacenado en el puntero anterior , ya que es el Node al que se accede justo antes del Node actual durante el recorrido.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find Levelorder // Predecessor of given node in the // Binary Tree #include <bits/stdc++.h> using namespace std; // Tree Node struct Node { struct Node *left, *right; int value; }; // Utility function to create a // new node with given value struct Node* newNode(int value) { Node* temp = new Node; temp->left = temp->right = NULL; temp->value = value; return temp; } // Function to find the Level Order Predecessor // of a given Node in Binary Tree Node* levelOrderPredecessor(Node* root, Node* key) { // Base Case if (root == NULL) return NULL; // If root equals to key if (root == key) { // There is no Predecessor of // root node return NULL; } // Create an empty queue for level // order traversal queue<Node*> q; // Enqueue Root q.push(root); // Temporary node to keep track of the // last node Node* prev = NULL; while (!q.empty()) { Node* nd = q.front(); q.pop(); if (nd == key) break; else prev = nd; if (nd->left != NULL) { q.push(nd->left); } if (nd->right != NULL) { q.push(nd->right); } } return prev; } // Driver code int main() { struct Node* root = newNode(20); root->left = newNode(10); root->left->left = newNode(4); root->left->right = newNode(18); root->right = newNode(26); root->right->left = newNode(24); root->right->right = newNode(27); root->left->right->left = newNode(14); root->left->right->left->left = newNode(13); root->left->right->left->right = newNode(15); root->left->right->right = newNode(19); struct Node* key = root->left->right->right; struct Node* res = levelOrderPredecessor(root, key); if (res) cout << "LevelOrder Predecessor of " << key->value << " is " << res->value; else cout << "LevelOrder Predecessor of " << key->value << " is " << "NULL"; return 0; }
Java
// Java program to find Levelorder // Predecessor of given node in the // Binary Tree import java.util.*; class GfG { // Tree Node static class Node { Node left, right; int value; } // Utility function to create a // new node with given value static Node newNode(int value) { Node temp = new Node(); temp.left = null; temp.right = null; temp.value = value; return temp; } // Function to find the Level Order Predecessor // of a given Node in Binary Tree static Node levelOrderPredecessor(Node root, Node key) { // Base Case if (root == null) return null; // If root equals to key if (root == key) { // There is no Predecessor of // root node return null; } // Create an empty queue for level // order traversal Queue<Node> q = new LinkedList<Node> (); // Enqueue Root q.add(root); // Temporary node to keep track of the // last node Node prev = null; while (!q.isEmpty()) { Node nd = q.peek(); q.remove(); if (nd == key) break; else prev = nd; if (nd.left != null) { q.add(nd.left); } if (nd.right != null) { q.add(nd.right); } } return prev; } // Driver code public static void main(String[] args) { Node root = newNode(20); root.left = newNode(10); root.left.left = newNode(4); root.left.right = newNode(18); root.right = newNode(26); root.right.left = newNode(24); root.right.right = newNode(27); root.left.right.left = newNode(14); root.left.right.left.left = newNode(13); root.left.right.left.right = newNode(15); root.left.right.right = newNode(19); Node key = root.left.right.right; Node res = levelOrderPredecessor(root, key); if (res != null) System.out.println("LevelOrder Predecessor of " + key.value + " is " + res.value); else System.out.println("LevelOrder Predecessor of " + key.value+ " is null"); } }
Python3
"""Python3 program to find Level order Predecessor of given node in the Binary Tree""" # A Binary Tree Node # Utility function to create a # new tree node class newNode: # Constructor to create a newNode def __init__(self, data): self.value = data self.left = None self.right = self.parent = None # Function to find the Level Order Predecessor # of a given Node in Binary Tree def levelOrderPredecessor(root, key) : # Base Case if (root == None) : return None # If root equals to key if (root == key): # There is no Predecessor of # root node return None # Create an empty queue for level # order traversal q = [] # Enqueue Root q.append(root) # Temporary node to keep track # of the last node prev = None while (len(q)): nd = q[0] q.pop(0) if (nd == key) : break else: prev = nd if (nd.left != None): q.append(nd.left) if (nd.right != None): q.append(nd.right) return prev # Driver Code if __name__ == '__main__': root = newNode(20) root.left = newNode(10) root.left.left = newNode(4) root.left.right = newNode(18) root.right = newNode(26) root.right.left = newNode(24) root.right.right = newNode(27) root.left.right.left = newNode(14) root.left.right.left.left = newNode(13) root.left.right.left.right = newNode(15) root.left.right.right = newNode(19) key = root.left.right.right res = levelOrderPredecessor(root, key) if (res) : print("LevelOrder Predecessor of", key.value, "is", res.value) else: print("LevelOrder Predecessor of", key.value, "is", "None") # This code is contributed by # SHUBHAMSINGH10
C#
// C# program to find Levelorder // Predecessor of given node in the // Binary Tree using System; using System.Collections.Generic; class GfG { // Tree Node class Node { public Node left, right; public int value; } // Utility function to create a // new node with given value static Node newNode(int value) { Node temp = new Node(); temp.left = null; temp.right = null; temp.value = value; return temp; } // Function to find the Level Order Predecessor // of a given Node in Binary Tree static Node levelOrderPredecessor(Node root, Node key) { // Base Case if (root == null) return null; // If root equals to key if (root == key) { // There is no Predecessor of // root node return null; } // Create an empty queue for level // order traversal Queue<Node> q = new Queue<Node> (); // Enqueue Root q.Enqueue(root); // Temporary node to keep track of the // last node Node prev = null; while (q.Count!=0) { Node nd = q.Peek(); q.Dequeue(); if (nd == key) break; else prev = nd; if (nd.left != null) { q.Enqueue(nd.left); } if (nd.right != null) { q.Enqueue(nd.right); } } return prev; } // Driver code public static void Main(String[] args) { Node root = newNode(20); root.left = newNode(10); root.left.left = newNode(4); root.left.right = newNode(18); root.right = newNode(26); root.right.left = newNode(24); root.right.right = newNode(27); root.left.right.left = newNode(14); root.left.right.left.left = newNode(13); root.left.right.left.right = newNode(15); root.left.right.right = newNode(19); Node key = root.left.right.right; Node res = levelOrderPredecessor(root, key); if (res != null) Console.WriteLine("LevelOrder Predecessor of " + key.value + " is " + res.value); else Console.WriteLine("LevelOrder Predecessor of " + key.value+ " is null"); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript program to find Levelorder // Predecessor of given node in the // Binary Tree // Tree Node class Node { constructor(value) { this.left = null; this.right = null; this.value = value; } } // Utility function to create a // new node with given value function newNode(value) { let temp = new Node(value); return temp; } // Function to find the Level Order Predecessor // of a given Node in Binary Tree function levelOrderPredecessor(root, key) { // Base Case if (root == null) return null; // If root equals to key if (root == key) { // There is no Predecessor of // root node return null; } // Create an empty queue for level // order traversal let q = []; // Enqueue Root q.push(root); // Temporary node to keep track of the // last node let prev = null; while (q.length > 0) { let nd = q[0]; q.shift(); if (nd == key) break; else prev = nd; if (nd.left != null) { q.push(nd.left); } if (nd.right != null) { q.push(nd.right); } } return prev; } let root = newNode(20); root.left = newNode(10); root.left.left = newNode(4); root.left.right = newNode(18); root.right = newNode(26); root.right.left = newNode(24); root.right.right = newNode(27); root.left.right.left = newNode(14); root.left.right.left.left = newNode(13); root.left.right.left.right = newNode(15); root.left.right.right = newNode(19); let key = root.left.right.right; let res = levelOrderPredecessor(root, key); if (res != null) document.write("LevelOrder Predecessor of " + key.value + " is " + res.value); else document.write("LevelOrder Predecessor of " + key.value+ " is null"); </script>
Producción:
LevelOrder Predecessor of 19 is 14
Complejidad de tiempo: O(N), ya que estamos usando un ciclo while que atravesará N veces, donde N es el número de Nodes en el árbol.
Espacio auxiliar: O (N), ya que estamos usando espacio adicional para la cola, que estamos usando para el recorrido del orden de nivel.