Centralidad del vector propio (medida de centralidad)

En la teoría de grafos, la centralidad del vector propio (también llamada centralidad propia) es una medida de la influencia de un Node en una red. Asigna puntuaciones relativas a todos los Nodes de la red basándose en el concepto de que las conexiones a los Nodes de puntuación alta contribuyen más a la puntuación del Node en cuestión que las conexiones iguales a los Nodes de puntuación baja.

El PageRank de Google y la centralidad de Katz son variantes de la centralidad del vector propio.

Uso de la array de adyacencia para encontrar la centralidad del vector propio

Para un grafo dado G:=(V,E)con |V|vértices, A = (a_{v,t})sea la array de adyacencia, es decir, a_{v,t} = 1si el vértice vestá vinculado al vértice t, y en a_{v,t} = 0caso contrario. La puntuación de centralidad relativa del vértice vse puede definir como:

x_{v}={\frac {1}{\lambda }}\sum _{t\in M(v)}x_{t}={\frac {1}{\lambda }}\sum _{t\in G}a_{v,t}x_{t}
where M(v) is a set of the neighbors of v and \lambda is a constant. With a small rearrangement this can be rewritten in vector notation as the eigenvector equation

\mathbf {Ax} =\lambda \mathbf {x}
In general, there will be many different eigenvalues \lambda for which a non-zero eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure. The v^{\text{th}} component of the related eigenvector then gives the relative centrality score of the vertex v in the network. The eigenvector is only defined up to a common factor, so only the ratios of the centralities of the vertices are well defined. To define an absolute score one must normalise the eigen vector e.g. such that the sum over all vertices is 1 or the total number of vertices n. Power iteration is one of many eigenvalue algorithms that may be used to find this dominant eigenvector. Furthermore, this can be generalized so that the entries in A can be real numbers representing connection strengths, as in a stochastic matrix.

Following is the code for the calculation of the Eigen Vector Centrality of the graph and its various nodes.

def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None,
                           weight='weight'):
    """Compute the eigenvector centrality for the graph G.
  
    Eigenvector centrality computes the centrality for a node based on the
    centrality of its neighbors. The eigenvector centrality for node `i` is
  
    .. math::
  
        \mathbf{Ax} = \lambda \mathbf{x}
  
    where `A` is the adjacency matrix of the graph G with eigenvalue `\lambda`.
    By virtue of the Perron–Frobenius theorem, there is a unique and positive
    solution if `\lambda` is the largest eigenvalue associated with the
    eigenvector of the adjacency matrix `A` ([2]_).
  
    Parameters
    ----------
    G : graph
      A networkx graph
  
    max_iter : integer, optional
      Maximum number of iterations in power method.
  
    tol : float, optional
      Error tolerance used to check convergence in power method iteration.
  
    nstart : dictionary, optional
      Starting value of eigenvector iteration for each node.
  
    weight : None or string, optional
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.
  
    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with eigenvector centrality as the value.
  
        
    Notes
    ------
    The eigenvector calculation is done by the power iteration method and has
    no guarantee of convergence. The iteration will stop after ``max_iter``
    iterations or an error tolerance of ``number_of_nodes(G)*tol`` has been
    reached.
  
    For directed graphs this is "left" eigenvector centrality which corresponds
    to the in-edges in the graph. For out-edges eigenvector centrality
    first reverse the graph with ``G.reverse()``.
  
     
    """
    from math import sqrt
    if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph:
        raise nx.NetworkXException("Not defined for multigraphs.")
  
    if len(G) == 0:
        raise nx.NetworkXException("Empty graph.")
  
    if nstart is None:
  
        # choose starting vector with entries of 1/len(G)
        x = dict([(n,1.0/len(G)) for n in G])
    else:
        x = nstart
  
    # normalize starting vector
    s = 1.0/sum(x.values())
    for k in x:
        x[k] *= s
    nnodes = G.number_of_nodes()
  
    # make up to max_iter iterations
    for i in range(max_iter):
        xlast = x
        x = dict.fromkeys(xlast, 0)
  
        # do the multiplication y^T = x^T A
        for n in x:
            for nbr in G[n]:
                x[nbr] += xlast[n] * G[n][nbr].get(weight, 1)
  
        # normalize vector
        try:
            s = 1.0/sqrt(sum(v**2 for v in x.values()))
  
        # this should never be zero?
        except ZeroDivisionError:
            s = 1.0
        for n in x:
            x[n] *= s
  
        # check convergence
        err = sum([abs(x[n]-xlast[n]) for n in x])
        if err < nnodes*tol:
            return x
  
    raise nx.NetworkXError("""eigenvector_centrality():
power iteration failed to converge in %d iterations."%(i+1))""")

La función anterior se invoca usando la biblioteca networkx y una vez que la biblioteca está instalada, eventualmente puede usarla y el siguiente código debe escribirse en python para la implementación de la centralidad del vector propio de un Node.

>>> import networkx as nx
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])

La salida del código anterior es:

['0 0.37', '1 0.60', '2 0.60', '3 0.37']

El resultado anterior es un diccionario que representa el valor de la centralidad del vector propio de cada Node. Lo anterior es una extensión de mi serie de artículos sobre las medidas de centralidad. Sigan haciendo networking!!!

Referencias
Puede leer más sobre el mismo en

https://en.wikipedia.org/wiki/Eigenvector_centralidad

http://networkx.readthedocs.io/en/networkx-1.10/index.html

Fuente de la imagen
https://image.slidesharecdn.com/srspesceesposito-150425073726-conversion-gate01/95/network-centrality-measures-and-their-efectiveness-28-638.jpg?cb=1429948092

Publicación traducida automáticamente

Artículo escrito por Jayant Bisht y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *