Los números de Fibonacci son los números en la siguiente secuencia de enteros.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..
En términos matemáticos, la secuencia Fn de los números de Fibonacci está definida por la relación de recurrencia
Fn = Fn-1 + Fn-2
con valores semilla
Python3
# Function for nth Fibonacci number def Fibonacci(n): # Check if input is 0 then it will # print incorrect input if n < 0: print("Incorrect input") # Check if n is 0 # then it will return 0 elif n == 0: return 0 # Check if n is 1,2 # it will return 1 elif n == 1 or n == 2: return 1 else: return Fibonacci(n-1) + Fibonacci(n-2) # Driver Program print(Fibonacci(9)) # This code is contributed by Saket Modi # then corrected and improved by Himanshu Kanojiya
Python3
# Function for nth fibonacci # number - Dynamic Programming # Taking 1st two fibonacci numbers as 0 and 1 FibArray = [0, 1] def fibonacci(n): # Check is n is less # than 0 if n < 0: print("Incorrect input") # Check is n is less # than len(FibArray) elif n < len(FibArray): return FibArray[n] else: FibArray.append(fibonacci(n - 1) + fibonacci(n - 2)) return FibArray[n] # Driver Program print(fibonacci(9)) # This code is contributed by Saket Modi
Python
# Function for nth fibonacci # number - Space Optimisation # Taking 1st two fibonacci numbers as 0 and 1 def fibonacci(n): a = 0 b = 1 # Check is n is less # than 0 if n < 0: print("Incorrect input") # Check is n is equal # to 0 elif n == 0: return 0 # Check if n is equal to 1 elif n == 1: return b else: for i in range(1, n): c = a + b a = b b = c return b # Driver Program print(fibonacci(9)) # This code is contributed by Saket Modi # Then corrected and improved by Himanshu Kanojiya
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA