Dada una array arr[] de tamaño N y un número entero K , la tarea es eliminar K elementos continuos de la array de modo que la suma del elemento restante sea máxima. Aquí necesitamos imprimir los elementos restantes de la array.
Ejemplos:
Entrada: arr[] = {-1, 1, 2, -3, 2, 2}, K = 3
Salida: -1 2 2
Elimine 1, 2, -3 y la suma de los
elementos restantes será 3, que es máximo posible.
Entrada: arr[] = {1, 2, -3, 4, 5}, K = 1
Salida: 1 2 4 5
Enfoque: Calcule la suma de k elementos consecutivos y elimine los elementos con la suma mínima. Imprime el resto de los elementos de la array.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print the array after removing // k consecutive elements such that the sum // of the remaining elements is maximized void maxSumArr(int arr[], int n, int k) { int cur = 0, index = 0; // Find the sum of first k elements for (int i = 0; i < k; i++) cur += arr[i]; // To store the minimum sum of k // consecutive elements of the array int min = cur; for (int i = 0; i < n - k; i++) { // Calculating sum of next k elements cur = cur - arr[i] + arr[i + k]; // Update the minimum sum so far and the // index of the first element if (cur < min) { cur = min; index = i + 1; } } // Printing result for (int i = 0; i < index; i++) cout << arr[i] << " "; for (int i = index + k; i < n; i++) cout << arr[i] << " "; } // Driver code int main() { int arr[] = { -1, 1, 2, -3, 2, 2 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; maxSumArr(arr, n, k); return 0; }
Java
// Java implementation of the approach class GFG { // Function to print the array after removing // k consecutive elements such that the sum // of the remaining elements is maximized static void maxSumArr(int arr[], int n, int k) { int cur = 0, index = 0; // Find the sum of first k elements for (int i = 0; i < k; i++) cur += arr[i]; // To store the minimum sum of k // consecutive elements of the array int min = cur; for (int i = 0; i < n - k; i++) { // Calculating sum of next k elements cur = cur - arr[i] + arr[i + k]; // Update the minimum sum so far and the // index of the first element if (cur < min) { cur = min; index = i + 1; } } // Printing result for (int i = 0; i < index; i++) System.out.print(arr[i] + " "); for (int i = index + k; i < n; i++) System.out.print(arr[i] + " "); } // Driver code public static void main(String[] args) { int arr[] = { -1, 1, 2, -3, 2, 2 }; int n = arr.length; int k = 3; maxSumArr(arr, n, k); } }
Python
# Python3 implementation of the approach # Function to print the array after removing # k consecutive elements such that the sum # of the remaining elements is maximized def maxSumArr(arr, n, k): cur = 0 index = 0 # Find the sum of first k elements for i in range(k): cur += arr[i] # To store the minimum sum of k # consecutive elements of the array min = cur; for i in range(n-k): # Calculating sum of next k elements cur = cur-arr[i]+arr[i + k] # Update the minimum sum so far and the # index of the first element if(cur<min): cur = min index = i + 1 # Printing result for i in range(index): print(arr[i], end =" ") i = index + k while i<n: print(arr[i], end =" ") i += 1 # Driver code arr = [-1, 1, 2, -3, 2, 2] n = len(arr) k = 3 maxSumArr(arr, n, k)
C#
// C# implementation of the above approach using System; class GFG { // Function to print the array after removing // k consecutive elements such that the sum // of the remaining elements is maximized static void maxSumArr(int []arr, int n, int k) { int cur = 0, index = 0; // Find the sum of first k elements for (int i = 0; i < k; i++) cur = cur + arr[i]; // To store the minimum sum of k // consecutive elements of the array int min = cur; for (int i = 0; i < n - k; i++) { // Calculating sum of next k elements cur = (cur - arr[i]) + (arr[i + k]); // Update the minimum sum so far and the // index of the first element if (cur < min) { cur = min; index = i + 1; } } // Printing result for (int i = 0; i < index; i++) Console.Write(arr[i] + " "); for (int i = index + k; i < n; i++) Console.Write(arr[i] + " "); } // Driver code static public void Main () { int []arr = { -1, 1, 2, -3, 2, 2 }; int n = arr.Length; int k = 3; maxSumArr(arr, n, k); } } // This code is contributed by ajit..
Javascript
<script> // Javascript implementation of the above approach // Function to print the array after removing // k consecutive elements such that the sum // of the remaining elements is maximized function maxSumArr(arr, n, k) { let cur = 0, index = 0; // Find the sum of first k elements for (let i = 0; i < k; i++) cur = cur + arr[i]; // To store the minimum sum of k // consecutive elements of the array let min = cur; for (let i = 0; i < n - k; i++) { // Calculating sum of next k elements cur = (cur - arr[i]) + (arr[i + k]); // Update the minimum sum so far and the // index of the first element if (cur < min) { cur = min; index = i + 1; } } // Printing result for (let i = 0; i < index; i++) document.write(arr[i] + " "); for (let i = index + k; i < n; i++) document.write(arr[i] + " "); } let arr = [ -1, 1, 2, -3, 2, 2 ]; let n = arr.length; let k = 3; maxSumArr(arr, n, k); </script>
Producción:
-1 2 2
Complejidad de tiempo: O(n)