Node Kth en Diagonal Traversal of Binary Tree

Dado un árbol binario y un valor K . La tarea es imprimir el k-ésimo Node en el recorrido diagonal del árbol binario. Si no existe tal Node, imprima -1.
Ejemplos: 
 

Input : 
         8
       /   \
      3    10
     /    /  \
    1    6   14
        / \  /
       4  7 13
k = 5
Output : 6
Diagonal Traversal of the above tree is:
8 10 14
3 6 7 13
1 4

Input :
       1
      / \
     2   3
    /     \
   4       5
k = 7   
Output : -1

Enfoque: La idea es realizar el recorrido diagonal del árbol binario hasta que se visiten K Nodes en el recorrido diagonal. Mientras recorre cada Node visitado, disminuya el valor de la variable K y devuelva el Node actual cuando el valor de K sea cero. Si el recorrido diagonal no contiene al menos K Nodes, devuelve -1.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to print kth node
// in the diagonal traversal of a binary tree
 
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node has data, pointer to left
// child and a pointer to right child
struct Node {
    int data;
    Node *left, *right;
};
 
// Helper function that allocates a new node
Node* newNode(int data)
{
    Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
int diagonalPrint(Node* root, int k)
{
    // Base cases
    if (root == NULL || k == 0)
        return -1;
 
    int ans = -1;
    queue<Node*> q;
 
    // Push root node
    q.push(root);
 
    // Push delimiter NULL
    q.push(NULL);
 
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
 
        if (temp == NULL) {
            if (q.empty()) {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.push(NULL);
        }
        else {
            while (temp) {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp->data;
 
                if (temp->left)
                    q.push(temp->left);
 
                temp = temp->right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
int main()
{
    Node* root = newNode(8);
    root->left = newNode(3);
    root->right = newNode(10);
    root->left->left = newNode(1);
    root->left->right = newNode(6);
    root->right->right = newNode(14);
    root->right->right->left = newNode(13);
    root->left->right->left = newNode(4);
    root->left->right->right = newNode(7);
 
    int k = 9;
 
    cout << diagonalPrint(root, k);
 
    return 0;
}

Java

// Java program to print kth node
// in the diagonal traversal of a binary tree
import java.util.*;
 
class GFG
{
     
// A binary tree node has data, pointer to left
//child and a pointer to right child
static class Node
{
    int data;
    Node left, right;
};
 
// Helper function that allocates a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    int ans = -1;
    Queue<Node> q = new LinkedList<Node>();
 
    // add root node
    q.add(root);
 
    // add delimiter null
    q.add(null);
 
    while (q.size() > 0)
    {
        Node temp = q.peek();
        q.remove();
 
        if (temp == null)
        {
            if (q.size() == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.add(null);
        }
        else {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.add(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
public static void main(String args[])
{
    Node root = newNode(8);
    root.left = newNode(3);
    root.right = newNode(10);
    root.left.left = newNode(1);
    root.left.right = newNode(6);
    root.right.right = newNode(14);
    root.right.right.left = newNode(13);
    root.left.right.left = newNode(4);
    root.left.right.right = newNode(7);
 
    int k = 9;
 
    System.out.println( diagonalPrint(root, k));
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python program to print kth node
# in the diagonal traversal of a binary tree
 
# Linked List node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Helper function that allocates a new node
def newNode(data) :
 
    node = Node(0)
    node.data = data
    node.left = node.right = None
    return (node)
 
# Iterative function to print kth node
# in diagonal traversal of binary tree
def diagonalPrint( root, k) :
 
    # Base cases
    if (root == None or k == 0) :
        return -1
 
    ans = -1
    q = []
 
    # append root node
    q.append(root)
 
    # append delimiter None
    q.append(None)
 
    while (len(q) > 0):
     
        temp = q[0]
        q.pop(0)
 
        if (temp == None):
         
            if (len(q) == 0) :
             
                # If kth node exists then return
                # the answer
                if (k == 0) :
                    return ans
 
                # If kth node doesnt exists
                # then break from the while loop
                else:
                    break
             
            q.append(None)
         
        else :
            while (temp != None):
             
                # If the required kth node
                # has been found then return the answer
                if (k == 0) :
                    return ans
 
                k = k - 1
 
                # Update the value of variable ans
                # each time
                ans = temp.data
 
                if (temp.left != None):
                    q.append(temp.left)
 
                temp = temp.right
             
    # If kth node doesnt exists then
    # return -1
    return -1
 
# Driver Code
 
root = newNode(8)
root.left = newNode(3)
root.right = newNode(10)
root.left.left = newNode(1)
root.left.right = newNode(6)
root.right.right = newNode(14)
root.right.right.left = newNode(13)
root.left.right.left = newNode(4)
root.left.right.right = newNode(7)
 
k = 9
 
print( diagonalPrint(root, k))
 
# This code is contributed by Arnab Kundu

C#

// C# program to print kth node
// in the diagonal traversal of a binary tree
using System;
using System.Collections.Generic;
 
class GFG
{
     
// A binary tree node has data, pointer to left
//child and a pointer to right child
public class Node
{
    public int data;
    public Node left, right;
};
 
// Helper function that allocates a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
static int diagonalPrint(Node root, int k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    int ans = -1;
    Queue<Node> q = new Queue<Node>();
 
    // Enqueue root node
    q.Enqueue(root);
 
    // Enqueue delimiter null
    q.Enqueue(null);
 
    while (q.Count > 0)
    {
        Node temp = q.Peek();
        q.Dequeue();
 
        if (temp == null)
        {
            if (q.Count == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.Enqueue(null);
        }
        else
        {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.Enqueue(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
public static void Main(String []args)
{
    Node root = newNode(8);
    root.left = newNode(3);
    root.right = newNode(10);
    root.left.left = newNode(1);
    root.left.right = newNode(6);
    root.right.right = newNode(14);
    root.right.right.left = newNode(13);
    root.left.right.left = newNode(4);
    root.left.right.right = newNode(7);
 
    int k = 9;
 
    Console.WriteLine( diagonalPrint(root, k));
}
}
 
/* This code is contributed by PrinciRaj1992 */

Javascript

<script>
 
// JavaScript program to print kth node
// in the diagonal traversal of a binary tree
   
// A binary tree node has data, pointer to left
//child and a pointer to right child
class Node
{
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Helper function that allocates a new node
function newNode(data)
{
    var node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Iterative function to print kth node
// in diagonal traversal of binary tree
function diagonalPrint(root, k)
{
    // Base cases
    if (root == null || k == 0)
        return -1;
 
    var ans = -1;
    var q = [];
 
    // push root node
    q.push(root);
 
    // push delimiter null
    q.push(null);
 
    while (q.length > 0)
    {
        var temp = q[0];
        q.shift();
 
        if (temp == null)
        {
            if (q.length == 0)
            {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
 
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.push(null);
        }
        else
        {
            while (temp != null)
            {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
 
                k--;
 
                // Update the value of variable ans
                // each time
                ans = temp.data;
 
                if (temp.left!=null)
                    q.push(temp.left);
 
                temp = temp.right;
            }
        }
    }
 
    // If kth node doesnt exists then
    // return -1
    return -1;
}
 
// Driver Code
var root = newNode(8);
root.left = newNode(3);
root.right = newNode(10);
root.left.left = newNode(1);
root.left.right = newNode(6);
root.right.right = newNode(14);
root.right.right.left = newNode(13);
root.left.right.left = newNode(4);
root.left.right.right = newNode(7);
var k = 9;
document.write( diagonalPrint(root, k));
 
 
 
</script>
Producción: 

4

 

Complejidad temporal : O(N), donde N es el número total de Nodes en el árbol binario. 
Espacio Auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por Sakshi_Srivastava y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *