Dado un conjunto de vértices ‘n’ y aristas ‘m’ de un gráfico simple no dirigido (sin aristas paralelas y sin bucle), encuentre el número de componentes de un solo ciclo presentes en el gráfico. Un componente cíclico único es un gráfico de n Nodes que contiene un solo ciclo a través de todos los Nodes del componente.
Ejemplo:
Let us consider the following graph with 15 vertices.
Input: V = 15, E = 14 1 10 // edge 1 1 5 // edge 2 5 10 // edge 3 2 9 // .. 9 15 // .. 2 15 // .. 2 12 // .. 12 15 // .. 13 8 // .. 6 14 // .. 14 3 // .. 3 7 // .. 7 11 // edge 13 11 6 // edge 14 Output :2 In the above-mentioned example, the two single-cyclic-components are composed of vertices (1, 10, 5) and (6, 11, 7, 3, 14) respectively.
Ahora podemos ver fácilmente que un componente de un solo ciclo es un componente conectado donde cada vértice tiene el grado de dos.
Por lo tanto, para resolver este problema, primero identificamos todos los componentes conectados del gráfico desconectado. Para esto, utilizamos el algoritmo de búsqueda primero en profundidad. Para que el algoritmo DFS funcione, se requiere mantener una array ‘encontrada’ para llevar un registro de todos los vértices que ha descubierto la función recursiva DFS. Una vez que se descubren todos los elementos de un componente conectado en particular (como los vértices (9, 2, 15, 12) forman un componente gráfico conectado), verificamos si todos los vértices del componente tienen el grado igual a dos. En caso afirmativo, aumentamos la variable de contador ‘recuento’, que denota el número de componentes de un solo ciclo que se encuentran en el gráfico dado. Para mantener una cuenta del componente con el que estamos tratando actualmente, también podemos usar una array de vectores ‘curr_graph’.
C++
// CPP program to find single cycle components // in a graph. #include <bits/stdc++.h> using namespace std; const int N = 100000; // degree of all the vertices int degree[N]; // to keep track of all the vertices covered // till now bool found[N]; // all the vertices in a particular // connected component of the graph vector<int> curr_graph; // adjacency list vector<int> adj_list[N]; // depth-first traversal to identify all the // nodes in a particular connected graph // component void DFS(int v) { found[v] = true; curr_graph.push_back(v); for (int it : adj_list[v]) if (!found[it]) DFS(it); } // function to add an edge in the graph void addEdge(vector<int> adj_list[N], int src, int dest) { // for index decrement both src and dest. src--, dest--; adj_list[src].push_back(dest); adj_list[dest].push_back(src); degree[src]++; degree[dest]++; } int countSingleCycles(int n, int m) { // count of cycle graph components int count = 0; for (int i = 0; i < n; ++i) { if (!found[i]) { curr_graph.clear(); DFS(i); // traversing the nodes of the // current graph component int flag = 1; for (int v : curr_graph) { if (degree[v] == 2) continue; else { flag = 0; break; } } if (flag == 1) { count++; } } } return(count); } int main() { // n->number of vertices // m->number of edges int n = 15, m = 14; addEdge(adj_list, 1, 10); addEdge(adj_list, 1, 5); addEdge(adj_list, 5, 10); addEdge(adj_list, 2, 9); addEdge(adj_list, 9, 15); addEdge(adj_list, 2, 15); addEdge(adj_list, 2, 12); addEdge(adj_list, 12, 15); addEdge(adj_list, 13, 8); addEdge(adj_list, 6, 14); addEdge(adj_list, 14, 3); addEdge(adj_list, 3, 7); addEdge(adj_list, 7, 11); addEdge(adj_list, 11, 6); cout << countSingleCycles(n, m); return 0; }
Java
// Java program to find single cycle components // in a graph. import java.util.*; class GFG { static int N = 100000; // degree of all the vertices static int degree[] = new int[N]; // to keep track of all the vertices covered // till now static boolean found[] = new boolean[N]; // all the vertices in a particular // connected component of the graph static Vector<Integer> curr_graph = new Vector<Integer>(); // adjacency list static Vector<Vector<Integer>> adj_list = new Vector<Vector<Integer>>(); // depth-first traversal to identify all the // nodes in a particular connected graph // component static void DFS(int v) { found[v] = true; curr_graph.add(v); for (int it = 0 ;it < adj_list.get(v).size(); it++) if (!found[adj_list.get(v).get(it)]) DFS(adj_list.get(v).get(it)); } // function to add an edge in the graph static void addEdge( int src,int dest) { // for index decrement both src and dest. src--; dest--; adj_list.get(src).add(dest); adj_list.get(dest).add(src); degree[src]++; degree[dest]++; } static int countSingleCycles(int n, int m) { // count of cycle graph components int count = 0; for (int i = 0; i < n; ++i) { if (!found[i]) { curr_graph.clear(); DFS(i); // traversing the nodes of the // current graph component int flag = 1; for (int v = 0 ; v < curr_graph.size(); v++) { if (degree[curr_graph.get(v)] == 2) continue; else { flag = 0; break; } } if (flag == 1) { count++; } } } return(count); } // Driver code public static void main(String args[]) { for(int i = 0; i < N + 1; i++) adj_list.add(new Vector<Integer>()); // n->number of vertices // m->number of edges int n = 15, m = 14; addEdge( 1, 10); addEdge( 1, 5); addEdge( 5, 10); addEdge( 2, 9); addEdge( 9, 15); addEdge( 2, 15); addEdge( 2, 12); addEdge( 12, 15); addEdge( 13, 8); addEdge( 6, 14); addEdge( 14, 3); addEdge( 3, 7); addEdge( 7, 11); addEdge( 11, 6); System.out.println(countSingleCycles(n, m)); } } // This code is contributed by Arnab Kundu
Python3
# Python3 program to find single # cycle components in a graph. N = 100000 # degree of all the vertices degree = [0] * N # to keep track of all the # vertices covered till now found = [None] * N # All the vertices in a particular # connected component of the graph curr_graph = [] # adjacency list adj_list = [[] for i in range(N)] # depth-first traversal to identify # all the nodes in a particular # connected graph component def DFS(v): found[v] = True curr_graph.append(v) for it in adj_list[v]: if not found[it]: DFS(it) # function to add an edge in the graph def addEdge(adj_list, src, dest): # for index decrement both src and dest. src, dest = src - 1, dest - 1 adj_list[src].append(dest) adj_list[dest].append(src) degree[src] += 1 degree[dest] += 1 def countSingleCycles(n, m): # count of cycle graph components count = 0 for i in range(0, n): if not found[i]: curr_graph.clear() DFS(i) # traversing the nodes of the # current graph component flag = 1 for v in curr_graph: if degree[v] == 2: continue else: flag = 0 break if flag == 1: count += 1 return count # Driver Code if __name__ == "__main__": # n->number of vertices # m->number of edges n, m = 15, 14 addEdge(adj_list, 1, 10) addEdge(adj_list, 1, 5) addEdge(adj_list, 5, 10) addEdge(adj_list, 2, 9) addEdge(adj_list, 9, 15) addEdge(adj_list, 2, 15) addEdge(adj_list, 2, 12) addEdge(adj_list, 12, 15) addEdge(adj_list, 13, 8) addEdge(adj_list, 6, 14) addEdge(adj_list, 14, 3) addEdge(adj_list, 3, 7) addEdge(adj_list, 7, 11) addEdge(adj_list, 11, 6) print(countSingleCycles(n, m)) # This code is contributed by Rituraj Jain
C#
// C# program to find single cycle components // in a graph. using System; using System.Collections.Generic; class GFG { static int N = 100000; // degree of all the vertices static int []degree = new int[N]; // to keep track of all the vertices covered // till now static bool []found = new bool[N]; // all the vertices in a particular // connected component of the graph static List<int> curr_graph = new List<int>(); // adjacency list static List<List<int>> adj_list = new List<List<int>>(); // depth-first traversal to identify all the // nodes in a particular connected graph // component static void DFS(int v) { found[v] = true; curr_graph.Add(v); for (int it = 0; it < adj_list[v].Count; it++) if (!found[adj_list[v][it]]) DFS(adj_list[v][it]); } // function to add an edge in the graph static void addEdge(int src,int dest) { // for index decrement both src and dest. src--; dest--; adj_list[src].Add(dest); adj_list[dest].Add(src); degree[src]++; degree[dest]++; } static int countSingleCycles(int n, int m) { // count of cycle graph components int count = 0; for (int i = 0; i < n; ++i) { if (!found[i]) { curr_graph.Clear(); DFS(i); // traversing the nodes of the // current graph component int flag = 1; for (int v = 0 ; v < curr_graph.Count; v++) { if (degree[curr_graph[v]] == 2) continue; else { flag = 0; break; } } if (flag == 1) { count++; } } } return(count); } // Driver code public static void Main(String []args) { for(int i = 0; i < N + 1; i++) adj_list.Add(new List<int>()); // n->number of vertices // m->number of edges int n = 15, m = 14; addEdge(1, 10); addEdge(1, 5); addEdge(5, 10); addEdge(2, 9); addEdge(9, 15); addEdge(2, 15); addEdge(2, 12); addEdge(12, 15); addEdge(13, 8); addEdge(6, 14); addEdge(14, 3); addEdge(3, 7); addEdge(7, 11); addEdge(11, 6); Console.WriteLine(countSingleCycles(n, m)); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript program to find single cycle components // in a graph. let N = 100000; // degree of all the vertices let degree=new Array(N); for(let i=0;i<N;i++) degree[i]=0; // to keep track of all the vertices covered // till now let found=new Array(N); for(let i=0;i<N;i++) found[i]=0; // all the vertices in a particular // connected component of the graph let curr_graph = []; // adjacency list let adj_list = []; // depth-first traversal to identify all the // nodes in a particular connected graph // component function DFS(v) { found[v] = true; curr_graph.push(v); for (let it = 0 ;it < adj_list[v].length; it++) if (!found[adj_list[v][it]]) DFS(adj_list[v][it]); } // function to add an edge in the graph function addEdge(src,dest) { // for index decrement both src and dest. src--; dest--; adj_list[src].push(dest); adj_list[dest].push(src); degree[src]++; degree[dest]++; } function countSingleCycles(n,m) { // count of cycle graph components let count = 0; for (let i = 0; i < n; ++i) { if (!found[i]) { curr_graph=[]; DFS(i); // traversing the nodes of the // current graph component let flag = 1; for (let v = 0 ; v < curr_graph.length; v++) { if (degree[curr_graph[v]] == 2) continue; else { flag = 0; break; } } if (flag == 1) { count++; } } } return(count); } // Driver code for(let i = 0; i < N + 1; i++) adj_list.push([]); // n->number of vertices // m->number of edges let n = 15, m = 14; addEdge( 1, 10); addEdge( 1, 5); addEdge( 5, 10); addEdge( 2, 9); addEdge( 9, 15); addEdge( 2, 15); addEdge( 2, 12); addEdge( 12, 15); addEdge( 13, 8); addEdge( 6, 14); addEdge( 14, 3); addEdge( 3, 7); addEdge( 7, 11); addEdge( 11, 6); document.write(countSingleCycles(n, m)); // This code is contributed by avanitrachhadiya2155 </script>
2
Por lo tanto, se encuentra el número total de componentes del gráfico de ciclo.
Publicación traducida automáticamente
Artículo escrito por PiyushKumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA