Concatene multiIndex en un solo índice en Pandas Series

En este artículo, veremos cómo concatenar múltiples índices en un solo índice en Pandas Series. Multi-índice se refiere a tener más de un índice con el mismo nombre.

Cree una serie de muestra:

Python3

# importing pandas module
import pandas as pd
import numpy as np
 
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sudheer', 'address1'),
                          ('sudheer', 'address2')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5),
                 index=index_values)
 
# display data
print(data)

Producción:

La unión de dos o más datos se conoce como concatenación. Aquí vamos a concatenar el índice usando la función de mapa .

Sintaxis:

mapa (divertido, iter)

  • diversión: función
  • iter: iteraciones.

A continuación se muestran varios ejemplos que muestran cómo concatenar múltiples índices en un solo índice en Series:

Ejemplo 1:

Este código explica la unión de direcciones en una basada en múltiples índices.

Python3

# importing pandas module
import pandas as pd
 
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sudheer', 'address1'),
                          ('sudheer', 'address2')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5), index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)

Producción:

Ejemplo 2:

Este código es un ejemplo para todo el mismo nombre dado, pero diferentes valores pasados ​​en una tupla.

Python3

# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details with same name.
index_values = pd.Series([('sravan', 'address1'),
                          ('sravan', 'address2'),
                          ('sravan', 'address3'),
                          ('sravan', 'address4')])
 
# assigning values with integers
data = pd.Series(np.arange(1, 5),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)

Producción:

Ejemplo 3: 

Este código ofrece una demostración de varios usuarios en una estructura de datos de lista anidada.

Python3

# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details
# with same name with nested lists.
index_values = pd.Series([['sravan', 'address1'],
                          ['sravan', 'address2'],
                          ['sravan', 'address3'],
                          ['sravan', 'address4'],
                          ['vani', 'address5'],
                          ['vani', 'address6'],
                          ['vani', 'address7'],
                          ['vani', 'address8']])
 
# assigning values with integers
data = pd.Series(np.arange(1, 9),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
 
print(data1)

Producción:

Ejemplo 4:

Este código explica los datos de la universidad con respecto a la dirección pasada en una lista anidada separada por el operador ‘/’.

Python3

# importing pandas module
import pandas as pd
 
# importing numpy module
import numpy as np
 
# Creating series data for address details w.r.t
# college names  with same name with nested lists.
index_values = pd.Series([['sravan', 'address1', 'vignan'],
                          ['sravan', 'address2', 'vignan'],
                          ['sravan', 'address3', 'vignan'],
                          ['sravan', 'address4', 'vignan'],
                          ['vani', 'address5', 'vignan lara'],
                          ['vani', 'address6', 'vignan lara'],
                          ['vani', 'address7', 'vignan lara'],
                          ['vani', 'address8', 'vignan lara']])
 
# assigning values with integers
data = pd.Series(np.arange(1, 9),
                 index=index_values)
 
# display data
print(data)
 
# mapping with data using '/' symbol with join
data1 = data.index.map('/'.join)
 
print(data1)

Producción:

Publicación traducida automáticamente

Artículo escrito por sravankumar8128 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *