Imprima la ruta hoja a hoja más larga en un árbol binario

C++

// C++ program to print the longest leaf to leaf
// path
#include <bits/stdc++.h>
using namespace std;
 
// Tree node structure used in the program
struct Node {
    int data;
    Node *left, *right;
};
 
struct Node* newNode(int data)
{
    struct Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
 
    return (node);
}
 
// Function to find height of a tree
int height(Node* root, int& ans, Node*(&k), int& lh, int& rh,
                                                     int& f)
{
    if (root == NULL)
        return 0;
 
    int left_height = height(root->left, ans, k, lh, rh, f);
 
    int right_height = height(root->right, ans, k, lh, rh, f);
 
    // update the answer, because diameter of a
    // tree is nothing but maximum value of
    // (left_height + right_height + 1) for each node
 
    if (ans < 1 + left_height + right_height) {
 
        ans = 1 + left_height + right_height;
 
        // save the root, this will help us finding the
        //  left and the right part of the diameter
        k = root;
 
        // save the height of left & right subtree as well.
        lh = left_height;
        rh = right_height;
    }
 
    return 1 + max(left_height, right_height);
}
 
// prints the root to leaf path
void printArray(int ints[], int len, int f)
{
    int i;
     
   
 
    // print left part of the path in reverse order
    if (f == 0) {
        for (i = len - 1; i >= 0; i--) {
            printf("%d ", ints[i]);
        }
    }
 
    // print right part of the path
    else if (f == 1) {
        for (i = 0; i < len; i++) {
            printf("%d ", ints[i]);
        }
    }
}
 
// this function finds out all the root to leaf paths
void printPathsRecur(Node* node, int path[], int pathLen,
                                         int max, int& f)
{
    if (node == NULL)
        return;
 
    // append this node to the path array
    path[pathLen] = node->data;
    pathLen++;
 
    // If it's a leaf, so print the path that led to here
    if (node->left == NULL && node->right == NULL) {
 
        // print only one path which is equal to the
        // height of the tree.
        if (pathLen == max && (f == 0 || f == 1)) {
            printArray(path, pathLen, f);
            f = 2;
        }
    }
 
    else {
 
        // otherwise try both subtrees
        printPathsRecur(node->left, path, pathLen, max, f);
        printPathsRecur(node->right, path, pathLen, max, f);
    }
}
 
// Computes the diameter of a binary tree with given root.
void diameter(Node* root)
{
    if (root == NULL)
        return;
 
    // lh will store height of left subtree
    // rh will store height of right subtree
    int ans = INT_MIN, lh = 0, rh = 0;
 
    // f is a flag whose value helps in printing
    // left & right part of the diameter only once
    int f = 0;
    Node* k;
     
  
    int height_of_tree = height(root, ans, k, lh, rh, f);
     
   
    int lPath[100], pathlen = 0;
 
    // print the left part of the diameter
    printPathsRecur(k->left, lPath, pathlen, lh, f);
    printf("%d ", k->data);
    int rPath[100];
    f = 1;
 
    // print the right part of the diameter
    printPathsRecur(k->right, rPath, pathlen, rh, f);
}
 
// Driver code
int main()
{
    // Enter the binary tree ...
    //           1
    //         /   \    
    //        2     3
    //      /   \  
    //     4     5
    //      \   / \
    //       8 6   7
    //      /
    //     9
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->left->right->left = newNode(6);
    root->left->right->right = newNode(7);
    root->left->left->right = newNode(8);
    root->left->left->right->left = newNode(9);
 
    diameter(root);
 
    return 0;
}

Java

// Java program to print the longest leaf to leaf
// path
import java.io.*;
 
// Tree node structure used in the program
class Node
{
    int data;
    Node left, right;
    Node(int val)
    {
        data = val;
        left = right = null;
    }
}
class GFG
{
    static int ans, lh, rh, f;
    static Node k;
    public static Node Root;
   
    // Function to find height of a tree
    static int height(Node root)
    {
        if (root == null)
            return 0;
        int left_height = height(root.left);
        int right_height = height(root.right);
       
        // update the answer, because diameter of a
        // tree is nothing but maximum value of
        // (left_height + right_height + 1) for each node
        if (ans < 1 + left_height + right_height)
        {
            ans = 1 + left_height + right_height;
  
            // save the root, this will help us finding the
            //  left and the right part of the diameter
            k = root;
  
            // save the height of left & right subtree as well.
            lh = left_height;
            rh = right_height;
        }
        return 1 + Math.max(left_height, right_height);
 
    }
   
    // prints the root to leaf path
    static void printArray(int[] ints, int len)
    {
        int i;
    
        // print left part of the path in reverse order
        if(f == 0)
        {
            for(i = len - 1; i >= 0; i--)
            {
                System.out.print(ints[i] + " ");
            }
        }
        else if(f == 1)
        {
            for (i = 0; i < len; i++)
            {
                System.out.print(ints[i] + " ");  
            }
        }
    }
     
    // this function finds out all the root to leaf paths
    static void printPathsRecur(Node node, int[] path,
                                int pathLen, int max)
    {
        if (node == null)
            return;
       
        // append this node to the path array
        path[pathLen] = node.data;
        pathLen++;
         
        // If it's a leaf, so print the path that led to here
        if (node.left == null && node.right == null)
        {
           
            // print only one path which is equal to the
            // height of the tree.
            if (pathLen == max && (f == 0 || f == 1))
            {
                printArray(path, pathLen);
                f = 2;
            }
        }
        else
        {
           
            // otherwise try both subtrees
        printPathsRecur(node.left, path, pathLen, max);
        printPathsRecur(node.right, path, pathLen, max);
        }
    }
     
    // Computes the diameter of a binary tree with given root.
    static void diameter(Node root)
    {
        if (root == null)
            return;
       
        // lh will store height of left subtree
        // rh will store height of right subtree
        ans = Integer.MIN_VALUE;
        lh = 0;
        rh = 0;
       
        // f is a flag whose value helps in printing
        // left & right part of the diameter only once
        f = 0;
        int height_of_tree = height(root);
         
        int[] lPath = new int[100];
        int pathlen = 0;
       
        // print the left part of the diameter
        printPathsRecur(k.left, lPath, pathlen, lh);
        System.out.print(k.data+" ");
        int[] rPath = new int[100];
        f = 1;
       
        // print the right part of the diameter
        printPathsRecur(k.right, rPath, pathlen, rh);
    }
   
    // Driver code
    public static void main (String[] args)
    {
       
        // Enter the binary tree ...
        //           1
        //         /   \    
        //        2     3
        //      /   \  
        //     4     5
        //      \   / \
        //       8 6   7
        //      /
        //     9
        GFG.Root = new Node(1);
        GFG.Root.left = new Node(2);
        GFG.Root.right = new Node(3);
        GFG.Root.left.left = new Node(4);
        GFG.Root.left.right = new Node(5);
        GFG.Root.left.right.left = new Node(6);
        GFG.Root.left.right.right = new Node(7);
        GFG.Root.left.left.right = new Node(8);
        GFG.Root.left.left.right.left = new Node(9);
        diameter(Root);
     
    }
}
 
// This code is contributed by rag2127

Python3

# Python3 program to print the longest
# leaf to leaf path
 
# Tree node structure used in the program
class Node:
     
    def __init__(self, x):
         
        self.data = x
        self.left = None
        self.right = None
 
# Function to find height of a tree
def height(root):
      
    global ans, k, lh, rh, f
     
    if (root == None):
        return 0
 
    left_height = height(root.left)
 
    right_height = height(root.right)
 
    # Update the answer, because diameter of a
    # tree is nothing but maximum value of
    # (left_height + right_height + 1) for each node
    if (ans < 1 + left_height + right_height):
        ans = 1 + left_height + right_height
 
        # Save the root, this will help us finding the
        # left and the right part of the diameter
        k = root
 
        # Save the height of left & right
        # subtree as well.
        lh = left_height
        rh = right_height
 
    return 1 + max(left_height, right_height)
 
# Prints the root to leaf path
def printArray(ints, lenn, f):
     
    # Print left part of the path
    # in reverse order
    if (f == 0):
        for i in range(lenn - 1, -1, -1):
            print(ints[i], end = " ")
 
    # Print right part of the path
    elif (f == 1):
        for i in range(lenn):
            print(ints[i], end = " ")
 
# This function finds out all the
# root to leaf paths
def printPathsRecur(node, path, maxm, pathlen):
     
    global f
 
    if (node == None):
        return
 
    # Append this node to the path array
    path[pathlen] = node.data
    pathlen += 1
 
    # If it's a leaf, so print the
    # path that led to here
    if (node.left == None and node.right == None):
         
        # Print only one path which is equal to the
        # height of the tree.
        # print(pathlen,"---",maxm)
        if (pathlen == maxm and (f == 0 or f == 1)):
             
            # print("innn")
            printArray(path, pathlen,f)
            f = 2
 
    else:
         
        # Otherwise try both subtrees
        printPathsRecur(node.left, path, maxm, pathlen)
        printPathsRecur(node.right, path, maxm, pathlen)
 
# Computes the diameter of a binary
# tree with given root.
def diameter(root):
     
    global ans, lh, rh, f, k, pathLen
 
    if (root == None):
        return
     
    # f is a flag whose value helps in printing
    # left & right part of the diameter only once
    height_of_tree = height(root)
    lPath = [0 for i in range(100)]
 
    # print(lh,"--",rh)
 
    # Print the left part of the diameter
    printPathsRecur(k.left, lPath, lh, 0);
    print(k.data, end = " ")
    rPath = [0 for i in range(100)]
    f = 1
 
    # Print the right part of the diameter
    printPathsRecur(k.right, rPath, rh, 0)
     
# Driver code
if __name__ == '__main__':
     
    k, lh, rh, f, ans, pathLen = None, 0, 0, 0, 0 - 10 ** 19, 0
     
    # Enter the binary tree ...
    #          1
    #        /   \
    #       2     3
    #     /   \
    #    4     5
    #     \   / \
    #      8 6   7
    #     /
    #    9
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.left.right.left = Node(6)
    root.left.right.right = Node(7)
    root.left.left.right = Node(8)
    root.left.left.right.left = Node(9)
 
    diameter(root)
     
# This code is contributed by mohit kumar 29

C#

// C# program to print the longest leaf to leaf
// path
using System;
 
// Tree node structure used in the program
public class Node
{
    public int data;
    public Node left, right;
    public Node(int val)
    {
        data = val;
        left = right = null;
    }
}
 
public class GFG
{
    static int ans, lh, rh, f;
    static Node k;
    public static Node Root;
     
    // Function to find height of a tree
    static int height(Node root)
    {
        if (root == null)
            return 0;
        int left_height = height(root.left);
        int right_height = height(root.right);
        
        // update the answer, because diameter of a
        // tree is nothing but maximum value of
        // (left_height + right_height + 1) for each node
        if (ans < 1 + left_height + right_height)
        {
            ans = 1 + left_height + right_height;
   
            // save the root, this will help us finding the
            //  left and the right part of the diameter
            k = root;
   
            // save the height of left & right subtree as well.
            lh = left_height;
            rh = right_height;
        }
        return 1 + Math.Max(left_height, right_height);
  
    }
     
    // prints the root to leaf path
    static void printArray(int[] ints, int len)
    {
        int i;
     
        // print left part of the path in reverse order
        if(f == 0)
        {
            for(i = len - 1; i >= 0; i--)
            {
                Console.Write(ints[i] + " ");
            }
        }
        else if(f == 1)
        {
            for (i = 0; i < len; i++)
            {
                Console.Write(ints[i] + " ");  
            }
        }
    }
     
    // this function finds out all the root to leaf paths
    static void printPathsRecur(Node node, int[] path,int pathLen, int max)
    {
        if (node == null)
            return;
        // append this node to the path array
        path[pathLen] = node.data;
        pathLen++;
          
        // If it's a leaf, so print the path that led to here
        if (node.left == null && node.right == null)
        {
            
            // print only one path which is equal to the
            // height of the tree.
            if (pathLen == max && (f == 0 || f == 1))
            {
                printArray(path, pathLen);
                f = 2;
            }
        }
        else
        {
            
            // otherwise try both subtrees
        printPathsRecur(node.left, path, pathLen, max);
        printPathsRecur(node.right, path, pathLen, max);
        }
    }
     
    // Computes the diameter of a binary tree with given root.
    static void diameter(Node root)
    {
        if (root == null)
            return;
        
        // lh will store height of left subtree
        // rh will store height of right subtree
        ans = Int32.MinValue;
        lh = 0;
        rh = 0;
        
        // f is a flag whose value helps in printing
        // left & right part of the diameter only once
        f = 0;
        int height_of_tree= height(root);
         
          
        int[] lPath = new int[100];
        int pathlen = 0 * height_of_tree;
        
        // print the left part of the diameter
        printPathsRecur(k.left, lPath, pathlen, lh);
        Console.Write(k.data+" ");
        int[] rPath = new int[100];
        f = 1;
        
        // print the right part of the diameter
        printPathsRecur(k.right, rPath, pathlen, rh);
    }
     
    // Driver code
    static public void Main (){
        // Enter the binary tree ...
        //           1
        //         /   \    
        //        2     3
        //      /   \  
        //     4     5
        //      \   / \
        //       8 6   7
        //      /
        //     9
        GFG.Root = new Node(1);
        GFG.Root.left = new Node(2);
        GFG.Root.right = new Node(3);
        GFG.Root.left.left = new Node(4);
        GFG.Root.left.right = new Node(5);
        GFG.Root.left.right.left = new Node(6);
        GFG.Root.left.right.right = new Node(7);
        GFG.Root.left.left.right = new Node(8);
        GFG.Root.left.left.right.left = new Node(9);
        diameter(Root);
    }
}
 
// This code is contributed by avanitrachhadiya2155

Javascript

<script>
// Javascript program to print the longest leaf to leaf
// path
 
// Tree node structure used in the program
class Node
{
    constructor(val)
    {
        this.data=val;
        this.left = this.right = null;
    }
}
 
let ans, lh, rh, f;
let  k;
let Root;
 
// Function to find height of a tree
function height(root)
{
    if (root == null)
        return 0;
    let left_height = height(root.left);
    let right_height = height(root.right);
        
    // update the answer, because diameter of a
    // tree is nothing but maximum value of
    // (left_height + right_height + 1) for each node
    if (ans < 1 + left_height + right_height)
    {
        ans = 1 + left_height + right_height;
   
        // save the root, this will help us finding the
        //  left and the right part of the diameter
        k = root;
   
        // save the height of left & right subtree as well.
        lh = left_height;
        rh = right_height;
    }
    return 1 + Math.max(left_height, right_height);
}
 
// prints the root to leaf path
function printArray(ints,len)
{
    let i;
     
    // print left part of the path in reverse order
    if(f == 0)
    {
        for(i = len - 1; i >= 0; i--)
        {
            document.write(ints[i] + " ");
        }
    }
    else if(f == 1)
    {
        for (i = 0; i < len; i++)
        {
            document.write(ints[i] + " "); 
        }
    }
}
 
// this function finds out all the root to leaf paths
function printPathsRecur(node,path,pathLen,max)
{
    if (node == null)
        return;
        
    // append this node to the path array
    path[pathLen] = node.data;
    pathLen++;
          
    // If it's a leaf, so print the path that led to here
    if (node.left == null && node.right == null)
    {
            
        // print only one path which is equal to the
        // height of the tree.
        if (pathLen == max && (f == 0 || f == 1))
        {
            printArray(path, pathLen);
            f = 2;
        }
    }
    else
    {
            
        // otherwise try both subtrees
        printPathsRecur(node.left, path, pathLen, max);
        printPathsRecur(node.right, path, pathLen, max);
    }
}
 
// Computes the diameter of a binary tree with given root.
function diameter(root)
{
    if (root == null)
        return;
        
    // lh will store height of left subtree
    // rh will store height of right subtree
    ans = Number.MIN_VALUE;
    lh = 0;
    rh = 0;
        
    // f is a flag whose value helps in printing
    // left & right part of the diameter only once
    f = 0;
    let height_of_tree = height(root);
          
    let lPath = new Array(100);
    let pathlen = 0;
        
    // print the left part of the diameter
    printPathsRecur(k.left, lPath, pathlen, lh);
    document.write(k.data+" ");
    let rPath = new Array(100);
    f = 1;
        
    // print the right part of the diameter
    printPathsRecur(k.right, rPath, pathlen, rh);
}
 
// Driver code
 
// Enter the binary tree ...
//           1
//         /   \   
//        2     3
//      /   \ 
//     4     5
//      \   / \
//       8 6   7
//      /
//     9
Root = new Node(1);
Root.left = new Node(2);
Root.right = new Node(3);
Root.left.left = new Node(4);
Root.left.right = new Node(5);
Root.left.right.left = new Node(6);
Root.left.right.right = new Node(7);
Root.left.left.right = new Node(8);
Root.left.left.right.left = new Node(9);
diameter(Root);
     
 
// This code is contributed by patel2127
</script>

Complejidad temporal: O(n) donde n es el tamaño del árbol binario

Espacio auxiliar: O(h) donde h es la altura del árbol binario.

Publicación traducida automáticamente

Artículo escrito por Rajesh_Sethi y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *