Dada una array ordenada y rotada arr[] de tamaño N y una clave , la tarea es encontrar la clave en la array.
Nota: Encuentre el elemento en tiempo O(logN) y suponga que todos los elementos son distintos.
Ejemplo:
Entrada: arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3}, clave = 3 Salida
: Encontrado en el índice 8Entrada: arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3}, clave = 30 Salida
: No encontradoEntrada: arr[] = {30, 40, 50, 10, 20}, clave = 10
Salida: Encontrado en el índice 3
Enfoque 1 (Encontrar el pivote donde ha ocurrido la rotación): La idea principal para resolver el problema es la siguiente.
La idea es encontrar el punto de pivote, dividir la array en dos sub-arrays y realizar una búsqueda binaria.
La idea principal para encontrar un pivote es:
- Para una array ordenada (en orden creciente) y rotada, el elemento pivote es el único elemento para el cual el siguiente elemento es más pequeño que él.
- Usando la búsqueda binaria basada en la idea anterior, se puede encontrar el pivote.
- Se puede observar que para un espacio de búsqueda de índices en el rango [l, r] donde el índice medio es mid ,
- Si la rotación ha ocurrido en la mitad izquierda, entonces obviamente el elemento en l será mayor que el que está en el medio .
- De lo contrario, se ordenará la mitad izquierda, pero el elemento de la mitad será mayor que el de r .
- Después de encontrar el pivote, divida la array en dos sub-arrays.
- Ahora los subconjuntos individuales están ordenados para que el elemento pueda buscarse mediante la búsqueda binaria.
Siga los pasos mencionados a continuación para implementar la idea:
- Descubra el punto de pivote mediante la búsqueda binaria. Estableceremos el puntero bajo como el primer índice de array y alto con el último índice de array.
- A partir del alto y el bajo calcularemos el valor medio.
- Si el valor de mid-1 es mayor que el de mid , devuelva ese valor como pivote.
- De lo contrario, si el valor en mid+1 es menor que mid , devuelve el valor medio como pivote.
- De lo contrario, si el valor en la posición baja es mayor que en la posición media , considere la mitad izquierda. De lo contrario, considere la mitad derecha.
- Divida la array en dos sub-arrays según el pivote que se encontró.
- Ahora llame a la búsqueda binaria para uno de los dos sub-arreglos.
- Si el elemento es mayor que el elemento 0 , busque en la array izquierda
- De lo contrario, busque en la array correcta.
- Si el elemento se encuentra en el subconjunto seleccionado, devuelva el índice
- Elsereturn -1 .
Siga la siguiente ilustración para una mejor comprensión
Ilustración:
Considere arr[] = {3, 4, 5, 1, 2}, clave = 1
Hallazgo de pivote:
bajo = 0, alto = 4:
=> medio = 2
=> arr[medio] = 5, arr[medio + 1] = 1
=> arr[medio] > arr[medio +1],
=> Por lo tanto, el pivote = medio = 2La array se divide en dos partes {3, 4, 5}, {1, 2}
Ahora, de acuerdo con las condiciones y la clave, necesitamos encontrar en la parte {1, 2}Hallazgo clave:
Aplicaremos la búsqueda binaria en {1, 2}.
low = 3 , high = 4.
=> mid = 3
=> arr[mid] = 1 , key = 1, por lo tanto arr[mid] = coincidencias clave.
=> El índice requerido = mid = 3Entonces el elemento se encuentra en el índice 3 .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to search an element // in a sorted and pivoted array #include <bits/stdc++.h> using namespace std; // Standard Binary Search function int binarySearch(int arr[], int low, int high, int key) { if (high < low) return -1; int mid = (low + high) / 2; if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); return binarySearch(arr, low, (mid - 1), key); } // Function to get pivot. For array 3, 4, 5, 6, 1, 2 // it returns 3 (index of 6) int findPivot(int arr[], int low, int high) { // Base cases if (high < low) return -1; if (high == low) return low; // low + (high - low)/2; int mid = (low + high) / 2; if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } // Searches an element key in a pivoted // sorted array arr[] of size n int pivotedBinarySearch(int arr[], int n, int key) { int pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, // then array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first compare with pivot // and then search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } // Driver program to check above functions int main() { // Let us search 3 in below array int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 }; int n = sizeof(arr1) / sizeof(arr1[0]); int key = 3; // Function calling cout << "Index of the element is : " << pivotedBinarySearch(arr1, n, key); return 0; }
C
/* Program to search an element in a sorted and pivoted array*/ #include <stdio.h> int findPivot(int[], int, int); int binarySearch(int[], int, int, int); /* Searches an element key in a pivoted sorted array arrp[] of size n */ int pivotedBinarySearch(int arr[], int n, int key) { int pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, // then array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first // compare with pivot and then // search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } /* Function to get pivot. For array 3, 4, 5, 6, 1, 2 it returns 3 (index of 6) */ int findPivot(int arr[], int low, int high) { // base cases if (high < low) return -1; if (high == low) return low; int mid = (low + high) / 2; /*low + (high - low)/2;*/ if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } /* Standard Binary Search function*/ int binarySearch(int arr[], int low, int high, int key) { if (high < low) return -1; int mid = (low + high) / 2; /*low + (high - low)/2;*/ if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); return binarySearch(arr, low, (mid - 1), key); } /* Driver program to check above functions */ int main() { // Let us search 3 in below array int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 }; int n = sizeof(arr1) / sizeof(arr1[0]); int key = 3; printf("Index of the element is : %d", pivotedBinarySearch(arr1, n, key)); return 0; }
Java
/* Java program to search an element in a sorted and pivoted array*/ class Main { /* Searches an element key in a pivoted sorted array arrp[] of size n */ static int pivotedBinarySearch(int arr[], int n, int key) { int pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, then // array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first // compare with pivot and then // search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } /* Function to get pivot. For array 3, 4, 5, 6, 1, 2 it returns 3 (index of 6) */ static int findPivot(int arr[], int low, int high) { // base cases if (high < low) return -1; if (high == low) return low; /* low + (high - low)/2; */ int mid = (low + high) / 2; if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } /* Standard Binary Search function */ static int binarySearch(int arr[], int low, int high, int key) { if (high < low) return -1; /* low + (high - low)/2; */ int mid = (low + high) / 2; if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); return binarySearch(arr, low, (mid - 1), key); } // main function public static void main(String args[]) { // Let us search 3 in below array int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 }; int n = arr1.length; int key = 3; System.out.println( "Index of the element is : " + pivotedBinarySearch(arr1, n, key)); } }
Python3
# Python Program to search an element # in a sorted and pivoted array # Searches an element key in a pivoted # sorted array arrp[] of size n def pivotedBinarySearch(arr, n, key): pivot = findPivot(arr, 0, n-1) # If we didn't find a pivot, # then array is not rotated at all if pivot == -1: return binarySearch(arr, 0, n-1, key) # If we found a pivot, then first # compare with pivot and then # search in two subarrays around pivot if arr[pivot] == key: return pivot if arr[0] <= key: return binarySearch(arr, 0, pivot-1, key) return binarySearch(arr, pivot + 1, n-1, key) # Function to get pivot. For array # 3, 4, 5, 6, 1, 2 it returns 3 # (index of 6) def findPivot(arr, low, high): # base cases if high < low: return -1 if high == low: return low # low + (high - low)/2; mid = int((low + high)/2) if mid < high and arr[mid] > arr[mid + 1]: return mid if mid > low and arr[mid] < arr[mid - 1]: return (mid-1) if arr[low] >= arr[mid]: return findPivot(arr, low, mid-1) return findPivot(arr, mid + 1, high) # Standard Binary Search function def binarySearch(arr, low, high, key): if high < low: return -1 # low + (high - low)/2; mid = int((low + high)/2) if key == arr[mid]: return mid if key > arr[mid]: return binarySearch(arr, (mid + 1), high, key) return binarySearch(arr, low, (mid - 1), key) # Driver program to check above functions # Let us search 3 in below array if __name__ == '__main__': arr1 = [5, 6, 7, 8, 9, 10, 1, 2, 3] n = len(arr1) key = 3 print("Index of the element is : ", \ pivotedBinarySearch(arr1, n, key)) # This is contributed by Smitha Dinesh Semwal
C#
// C# program to search an element // in a sorted and pivoted array using System; class main { // Searches an element key in a // pivoted sorted array arrp[] // of size n static int pivotedBinarySearch(int[] arr, int n, int key) { int pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, then // array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first // compare with pivot and then // search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } /* Function to get pivot. For array 3, 4, 5, 6, 1, 2 it returns 3 (index of 6) */ static int findPivot(int[] arr, int low, int high) { // base cases if (high < low) return -1; if (high == low) return low; /* low + (high - low)/2; */ int mid = (low + high) / 2; if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } /* Standard Binary Search function */ static int binarySearch(int[] arr, int low, int high, int key) { if (high < low) return -1; /* low + (high - low)/2; */ int mid = (low + high) / 2; if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); return binarySearch(arr, low, (mid - 1), key); } // Driver Code public static void Main() { // Let us search 3 in below array int[] arr1 = { 5, 6, 7, 8, 9, 10, 1, 2, 3 }; int n = arr1.Length; int key = 3; Console.Write("Index of the element is : " + pivotedBinarySearch(arr1, n, key)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to search an element // in a sorted and pivoted array // Standard Binary Search function function binarySearch($arr, $low, $high, $key) { if ($high < $low) return -1; /*low + (high - low)/2;*/ $mid = floor($low + $high) / 2; if ($key == $arr[$mid]) return $mid; if ($key > $arr[$mid]) return binarySearch($arr, ($mid + 1), $high, $key); else return binarySearch($arr, $low, ($mid -1), $key); } // Function to get pivot. // For array 3, 4, 5, 6, 1, 2 // it returns 3 (index of 6) function findPivot($arr, $low, $high) { // base cases if ($high < $low) return -1; if ($high == $low) return $low; /*low + (high - low)/2;*/ $mid = ($low + $high)/2; if ($mid < $high and $arr[$mid] > $arr[$mid + 1]) return $mid; if ($mid > $low and $arr[$mid] < $arr[$mid - 1]) return ($mid - 1); if ($arr[$low] >= $arr[$mid]) return findPivot($arr, $low, $mid - 1); return findPivot($arr, $mid + 1, $high); } // Searches an element key // in a pivoted sorted array // arr[] of size n */ function pivotedBinarySearch($arr, $n, $key) { $pivot = findPivot($arr, 0, $n - 1); // If we didn't find a pivot, // then array is not rotated // at all if ($pivot == -1) return binarySearch($arr, 0, $n - 1, $key); // If we found a pivot, // then first compare // with pivot and then // search in two subarrays // around pivot if ($arr[$pivot] == $key) return $pivot; if ($arr[0] <= $key) return binarySearch($arr, 0, $pivot - 1, $key); return binarySearch($arr, $pivot + 1, $n - 1, $key); } // Driver Code // Let us search 3 // in below array $arr1 = array(5, 6, 7, 8, 9, 10, 1, 2, 3); $n = count($arr1); $key = 3; // Function calling echo "Index of the element is : ", pivotedBinarySearch($arr1, $n, $key); // This code is contributed by anuj_67. ?>
Javascript
<script> /* JavaScript Program to search an element in a sorted and pivoted array*/ /* Standard Binary Search function*/ function binarySearch( arr, low, high, key){ if (high < low) return -1; let mid = Math.floor((low + high) / 2); /*low + (high - low)/2;*/ if (key == arr[mid]) return mid; if (key > arr[mid]) return binarySearch(arr, (mid + 1), high, key); // else return binarySearch(arr, low, (mid - 1), key); } /* Function to get pivot. For array 3, 4, 5, 6, 1, 2 it returns 3 (index of 6) */ function findPivot( arr, low, high){ // base cases if (high < low) return -1; if (high == low) return low; let mid = Math.floor((low + high) / 2); /*low + (high - low)/2;*/ if (mid < high && arr[mid] > arr[mid + 1]) return mid; if (mid > low && arr[mid] < arr[mid - 1]) return (mid - 1); if (arr[low] >= arr[mid]) return findPivot(arr, low, mid - 1); return findPivot(arr, mid + 1, high); } /* Searches an element key in a pivoted sorted array arr[] of size n */ function pivotedBinarySearch( arr, n, key){ let pivot = findPivot(arr, 0, n - 1); // If we didn't find a pivot, // then array is not rotated at all if (pivot == -1) return binarySearch(arr, 0, n - 1, key); // If we found a pivot, then first compare with pivot // and then search in two subarrays around pivot if (arr[pivot] == key) return pivot; if (arr[0] <= key) return binarySearch(arr, 0, pivot - 1, key); return binarySearch(arr, pivot + 1, n - 1, key); } /* Driver program to check above functions */ // Let us search 3 in below array let arr1 = [ 5, 6, 7, 8, 9, 10, 1, 2, 3 ]; let n = arr1.length; let key = 3; // Function calling document.write( "Index of the element is : " + pivotedBinarySearch(arr1, n, key)); </script>
Index of the element is : 8
Complejidad de tiempo: O (log N) La búsqueda binaria requiere comparaciones de log n para encontrar el elemento.
Complejidad espacial: O(1)
Gracias a Ajay Mishra por proporcionar la solución anterior.
Enfoque 2 (Búsqueda binaria directa en Array sin encontrar Pivot):
La idea es que, en lugar de dos o más pasadas de búsqueda binaria, el resultado se pueda encontrar en una pasada de búsqueda binaria.
La idea es crear una función recursiva para implementar la búsqueda binaria donde la región de búsqueda es [l, r]. Para cada llamada recursiva:
- Calculamos el valor medio como mid = (l + h) / 2
- Luego intente averiguar si l a mid está ordenado, o (mid+1) a h está ordenado
- En base a eso, decida la siguiente región de búsqueda y continúe haciéndolo hasta que se encuentre el elemento o l supere h .
Siga los pasos mencionados a continuación para implementar la idea:
- Use una función recursiva para implementar la búsqueda binaria para encontrar la clave:
- Encuentra el punto medio mid = (l + h)/2
- Si la clave está presente en el punto medio, devuelva mid .
- De lo contrario, si el valor en l es menor que el de mid, entonces arr[l . . . mid] está ordenado
- Si la clave a buscar se encuentra en el rango de arr[l] a arr[mid] , recurra para arr[l . . . medio].
- De lo contrario, se repite para arr[mid+1 . . . h]
- De lo contrario arr[mid+1. . . h] está ordenado:
- Si la clave a buscar se encuentra en el rango de arr[mid+1] a arr[h] , recurra para arr[mid+1. . . h].
- De lo contrario recurra para arr[l. . . medio]
Siga la siguiente ilustración para una mejor comprensión:
Ilustración:
Entrada arr[] = {3, 4, 5, 1, 2} , clave = 1
Inicialmente bajo = 0, alto = 4.bajo = 0, alto = 4:
=> medio = 2
=> arr[medio] = 5, que no es el valor deseado.
=> arr[bajo] < arr[medio] Entonces, la mitad izquierda está ordenada.
=> clave < arr[bajo], por lo que la siguiente región de búsqueda es 3 a 4.low = 3, high = 4:
=> mid = 3
=> arr[mid] = 1 = key
=> Entonces el elemento se encuentra en el índice 3.El elemento se encuentra en el índice 3 .
A continuación se muestra la implementación de la idea anterior:
C++
// Search an element in sorted and rotated // array using single pass of Binary Search #include <bits/stdc++.h> using namespace std; // Returns index of key in arr[l..h] if // key is present, otherwise returns -1 int search(int arr[], int l, int h, int key) { if (l > h) return -1; int mid = (l + h) / 2; if (arr[mid] == key) return mid; /* If arr[l...mid] is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); /*If key not lies in first half subarray, Divide other half into two subarrays, such that we can quickly check if key lies in other half */ return search(arr, mid + 1, h, key); } /* If arr[l..mid] first subarray is not sorted, then arr[mid... h] must be sorted subarray */ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // Driver program int main() { int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); int key = 3; int i = search(arr, 0, n - 1, key); if (i != -1) cout << "Index: " << i << endl; else cout << "Key not found"; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// Search an element in sorted and rotated // array using single pass of Binary Search #include <stdio.h> // Returns index of key in arr[l..h] if // key is present, otherwise returns -1 int search(int arr[], int l, int h, int key) { if (l > h) return -1; int mid = (l + h) / 2; if (arr[mid] == key) return mid; /* If arr[l...mid] is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); /*If key not lies in first half subarray, Divide other half into two subarrays, such that we can quickly check if key lies in other half */ return search(arr, mid + 1, h, key); } /* If arr[l..mid] first subarray is not sorted, then arr[mid... h] must be sorted subarray */ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // Driver program int main() { int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); int key = 3; int i = search(arr, 0, n - 1, key); if (i != -1) printf("Index: %d\n", i); else printf("Key not found"); } // This code is contributed by Aditya Kumar (adityakumar129)
Java
/* Java program to search an element in sorted and rotated array using single pass of Binary Search*/ class Main { // Returns index of key in arr[l..h] // if key is present, otherwise returns -1 static int search(int arr[], int l, int h, int key) { if (l > h) return -1; int mid = (l + h) / 2; if (arr[mid] == key) return mid; /* If arr[l...mid] first subarray is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); /*If key not lies in first half subarray, Divide other half into two subarrays, such that we can quickly check if key lies in other half */ return search(arr, mid + 1, h, key); } /* If arr[l..mid] first subarray is not sorted, then arr[mid... h] must be sorted subarray*/ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // main function public static void main(String args[]) { int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 }; int n = arr.length; int key = 3; int i = search(arr, 0, n - 1, key); if (i != -1) System.out.println("Index: " + i); else System.out.println("Key not found"); } } // This code is contributed by Aditya Kumar (adityakumar129)
Python3
# Search an element in sorted and rotated array using # single pass of Binary Search # Returns index of key in arr[l..h] if key is present, # otherwise returns -1 def search(arr, l, h, key): if l > h: return -1 mid = (l + h) // 2 if arr[mid] == key: return mid # If arr[l...mid] is sorted if arr[l] <= arr[mid]: # As this subarray is sorted, we can quickly # check if key lies in half or other half if key >= arr[l] and key <= arr[mid]: return search(arr, l, mid-1, key) return search(arr, mid + 1, h, key) # If arr[l..mid] is not sorted, then arr[mid... r] # must be sorted if key >= arr[mid] and key <= arr[h]: return search(arr, mid + 1, h, key) return search(arr, l, mid-1, key) # Driver program if __name__ == '__main__': arr = [4, 5, 6, 7, 8, 9, 1, 2, 3] key = 3 i = search(arr, 0, len(arr)-1, key) if i != -1: print("Index: % d" % i) else: print("Key not found") # This code is contributed by Shreyanshi Arun
C#
/* C# program to search an element in sorted and rotated array using single pass of Binary Search*/ using System; class GFG { // Returns index of key in arr[l..h] // if key is present, otherwise // returns -1 static int search(int[] arr, int l, int h, int key) { if (l > h) return -1; int mid = (l + h) / 2; if (arr[mid] == key) return mid; /* If arr[l...mid] is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); return search(arr, mid + 1, h, key); } /* If arr[l..mid] is not sorted, then arr[mid... r] must be sorted*/ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // main function public static void Main() { int[] arr = { 4, 5, 6, 7, 8, 9, 1, 2, 3 }; int n = arr.Length; int key = 3; int i = search(arr, 0, n - 1, key); if (i != -1) Console.WriteLine("Index: " + i); else Console.WriteLine("Key not found"); } } // This code is contributed by anuj_67.
PHP
<?php // Search an element in sorted and rotated // array using single pass of Binary Search // Returns index of key in arr[l..h] if // key is present, otherwise returns -1 function search($arr, $l, $h, $key) { if ($l > $h) return -1; $mid = floor(($l + $h) / 2); if ($arr[$mid] == $key) return $mid; /* If arr[l...mid] is sorted */ if ($arr[$l] <= $arr[$mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if ($key >= $arr[$l] and $key <= $arr[$mid]) return search($arr, $l, $mid - 1, $key); return search($arr, $mid + 1, $h, $key); } /* If arr[l..mid] is not sorted, then arr[mid... r] must be sorted*/ if ($key >= $arr[$mid] and $key <= $arr[$h]) return search($arr, $mid + 1, $h, $key); return search($arr, $l, $mid-1, $key); } // Driver Code $arr = array( 5, 6, 7, 8, 9, 10, 1, 2, 3 ); $n = sizeof($arr); $key = 3; $i = search($arr, 0, $n-1, $key); if ($i != -1) echo "Index: ", $i, " \n"; else echo "Key not found"; // This code is contributed by ajit ?>
Javascript
<script> // Search an element in sorted and rotated // array using single pass of Binary Search // Returns index of key in arr[l..h] if // key is present, otherwise returns -1 function search(arr, l, h, key){ if (l > h) return -1; let mid = Math.floor((l + h) / 2); if (arr[mid] == key) return mid; /* If arr[l...mid] is sorted */ if (arr[l] <= arr[mid]) { /* As this subarray is sorted, we can quickly check if key lies in half or other half */ if (key >= arr[l] && key <= arr[mid]) return search(arr, l, mid - 1, key); /*If key not lies in first half subarray, Divide other half into two subarrays, such that we can quickly check if key lies in other half */ return search(arr, mid + 1, h, key); } /* If arr[l..mid] first subarray is not sorted, then arr[mid... h] must be sorted subarray */ if (key >= arr[mid] && key <= arr[h]) return search(arr, mid + 1, h, key); return search(arr, l, mid - 1, key); } // Driver program let arr = [ 4, 5, 6, 7, 8, 9, 1, 2, 3 ]; let n = arr.length; let key = 3; let i = search(arr, 0, n - 1, key); if (i != -1) document.write("Index: " +i +"\n"); else document.write("Key not found"); </script>
Index: 8
Complejidad temporal: O(log N). La búsqueda binaria requiere comparaciones log n para encontrar el elemento. Entonces la complejidad del tiempo es O (log n).
Complejidad espacial: O(1). Como no se requiere espacio adicional.
Gracias a Gaurav Ahirwar por sugerir la solución anterior.
¿Cómo manejar los duplicados?
A primera vista, no parece posible buscar en el tiempo O (Log N) en todos los casos en los que se permiten duplicados.
Por ejemplo, considere buscar 0 en {2, 2, 2, 2, 2, 2, 2, 2, 0, 2} y {2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2 , 2}.
Consulte el siguiente artículo para encontrar una solución a este problema: https://www.geeksforgeeks.org/search-an-element-in-a-sorted-and-rotated-array-with-duplicates/
Artículos similares:
- Encuentre el elemento mínimo en una array ordenada y rotada
- Dada una array ordenada y rotada, encuentre si hay un par con una suma dada.
Escriba comentarios si encuentra algún error en los códigos/algoritmos anteriores, o encuentre otras formas de resolver el mismo problema.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA