La búsqueda de un gráfico es un problema bastante famoso y tiene muchos usos prácticos. Ya hemos discutido aquí cómo buscar un vértice objetivo a partir de un vértice fuente usando BFS . En la búsqueda de gráficos normal usando BFS/DFS, comenzamos nuestra búsqueda en una dirección, generalmente desde el vértice de origen hacia el vértice de destino, pero ¿qué sucede si comenzamos a buscar desde ambas direcciones simultáneamente?
La búsqueda bidireccional es un algoritmo de búsqueda de gráficos que encuentra la ruta más pequeña desde el origen hasta el vértice de destino. Ejecuta dos búsquedas simultáneas:
- Búsqueda hacia adelante desde el vértice de origen/inicial hacia el vértice de destino
- Búsqueda hacia atrás desde el vértice de destino/objetivo hacia el vértice de origen
La búsqueda bidireccional reemplaza el gráfico de búsqueda único (que probablemente crezca exponencialmente) con dos subgráficos más pequeños: uno que comienza en el vértice inicial y otro que comienza en el vértice objetivo. La búsqueda termina cuando dos gráficos se cruzan.
Al igual que el algoritmo A* , la búsqueda bidireccional puede guiarse por una estimación heurística de la distancia restante desde el origen hasta el objetivo y viceversa para encontrar el camino más corto posible.
Considere seguir un ejemplo simple:
Supongamos que queremos encontrar si existe un camino desde el vértice 0 al vértice 14. Aquí podemos ejecutar dos búsquedas, una desde el vértice 0 y otra desde el vértice 14. Cuando tanto la búsqueda hacia adelante como hacia atrás se encuentran en el vértice 7, sabemos que tenemos encontró una ruta del Node 0 al 14 y la búsqueda puede terminar ahora. Podemos ver claramente que hemos evitado con éxito la exploración innecesaria.
¿Por qué enfoque bidireccional?
Debido a que en muchos casos es más rápido, reduce drásticamente la cantidad de exploración requerida.
Supongamos que si el factor de ramificación del árbol es b y la distancia del vértice objetivo desde la fuente es d , entonces la complejidad de búsqueda normal de BFS/DFS sería O(b d ). Por otro lado, si ejecutamos dos operaciones de búsqueda, la complejidad sería O(b d/2 ) para cada búsqueda y la complejidad total sería O(b d/2 +b d/2 ) , que es mucho menor que O( b d ) .
¿Cuándo usar el enfoque bidireccional?
Podemos considerar un enfoque bidireccional cuando:
- Tanto el estado inicial como el objetivo son únicos y están completamente definidos.
- El factor de ramificación es exactamente el mismo en ambas direcciones.
Medidas de desempeño
- Completitud: la búsqueda bidireccional está completa si se utiliza BFS en ambas búsquedas.
- Optimalidad: es óptimo si se usa BFS para la búsqueda y las rutas tienen un costo uniforme.
- Complejidad de tiempo y espacio: La complejidad de tiempo y espacio es O(b d/2 ).
A continuación se muestra una implementación muy simple que representa el concepto de búsqueda bidireccional usando BFS. Esta implementación considera caminos no dirigidos sin ningún peso.
C++
// C++ program for Bidirectional BFS search // to check path between two vertices #include <bits/stdc++.h> using namespace std; // class representing undirected graph // using adjacency list class Graph { //number of nodes in graph int V; // Adjacency list list<int> *adj; public: Graph(int V); int isIntersecting(bool *s_visited, bool *t_visited); void addEdge(int u, int v); void printPath(int *s_parent, int *t_parent, int s, int t, int intersectNode); void BFS(list<int> *queue, bool *visited, int *parent); int biDirSearch(int s, int t); }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; }; // Method for adding undirected edge void Graph::addEdge(int u, int v) { this->adj[u].push_back(v); this->adj[v].push_back(u); }; // Method for Breadth First Search void Graph::BFS(list<int> *queue, bool *visited, int *parent) { int current = queue->front(); queue->pop_front(); list<int>::iterator i; for (i=adj[current].begin();i != adj[current].end();i++) { // If adjacent vertex is not visited earlier // mark it visited by assigning true value if (!visited[*i]) { // set current as parent of this vertex parent[*i] = current; // Mark this vertex visited visited[*i] = true; // Push to the end of queue queue->push_back(*i); } } }; // check for intersecting vertex int Graph::isIntersecting(bool *s_visited, bool *t_visited) { int intersectNode = -1; for(int i=0;i<V;i++) { // if a vertex is visited by both front // and back BFS search return that node // else return -1 if(s_visited[i] && t_visited[i]) return i; } return -1; }; // Print the path from source to target void Graph::printPath(int *s_parent, int *t_parent, int s, int t, int intersectNode) { vector<int> path; path.push_back(intersectNode); int i = intersectNode; while (i != s) { path.push_back(s_parent[i]); i = s_parent[i]; } reverse(path.begin(), path.end()); i = intersectNode; while(i != t) { path.push_back(t_parent[i]); i = t_parent[i]; } vector<int>::iterator it; cout<<"*****Path*****\n"; for(it = path.begin();it != path.end();it++) cout<<*it<<" "; cout<<"\n"; }; // Method for bidirectional searching int Graph::biDirSearch(int s, int t) { // boolean array for BFS started from // source and target(front and backward BFS) // for keeping track on visited nodes bool s_visited[V], t_visited[V]; // Keep track on parents of nodes // for front and backward search int s_parent[V], t_parent[V]; // queue for front and backward search list<int> s_queue, t_queue; int intersectNode = -1; // necessary initialization for(int i=0; i<V; i++) { s_visited[i] = false; t_visited[i] = false; } s_queue.push_back(s); s_visited[s] = true; // parent of source is set to -1 s_parent[s]=-1; t_queue.push_back(t); t_visited[t] = true; // parent of target is set to -1 t_parent[t] = -1; while (!s_queue.empty() && !t_queue.empty()) { // Do BFS from source and target vertices BFS(&s_queue, s_visited, s_parent); BFS(&t_queue, t_visited, t_parent); // check for intersecting vertex intersectNode = isIntersecting(s_visited, t_visited); // If intersecting vertex is found // that means there exist a path if(intersectNode != -1) { cout << "Path exist between " << s << " and " << t << "\n"; cout << "Intersection at: " << intersectNode << "\n"; // print the path and exit the program printPath(s_parent, t_parent, s, t, intersectNode); exit(0); } } return -1; } // Driver code int main() { // no of vertices in graph int n=15; // source vertex int s=0; // target vertex int t=14; // create a graph given in above diagram Graph g(n); g.addEdge(0, 4); g.addEdge(1, 4); g.addEdge(2, 5); g.addEdge(3, 5); g.addEdge(4, 6); g.addEdge(5, 6); g.addEdge(6, 7); g.addEdge(7, 8); g.addEdge(8, 9); g.addEdge(8, 10); g.addEdge(9, 11); g.addEdge(9, 12); g.addEdge(10, 13); g.addEdge(10, 14); if (g.biDirSearch(s, t) == -1) cout << "Path don't exist between " << s << " and " << t << "\n"; return 0; }
Java
// Java program for Bidirectional BFS search // to check path between two vertices import java.io.*; import java.util.*; // class representing undirected graph // using adjacency list class Graph { // number of nodes in graph private int V; // Adjacency list private LinkedList<Integer>[] adj; // Constructor @SuppressWarnings("unchecked") public Graph(int v) { V = v; adj = new LinkedList[v]; for (int i = 0; i < v; i++) adj[i] = new LinkedList<Integer>(); } // Method for adding undirected edge public void addEdge(int u, int v) { adj[u].add(v); adj[v].add(u); } // Method for Breadth First Search public void bfs(Queue<Integer> queue, Boolean[] visited, int[] parent) { int current = queue.poll(); for (int i : adj[current]) { // If adjacent vertex is not visited earlier // mark it visited by assigning true value if (!visited[i]) { // set current as parent of this vertex parent[i] = current; // Mark this vertex visited visited[i] = true; // Push to the end of queue queue.add(i); } } } // check for intersecting vertex public int isIntersecting(Boolean[] s_visited, Boolean[] t_visited) { for (int i = 0; i < V; i++) { // if a vertex is visited by both front // and back BFS search return that node // else return -1 if (s_visited[i] && t_visited[i]) return i; } return -1; } // Print the path from source to target public void printPath(int[] s_parent, int[] t_parent, int s, int t, int intersectNode) { LinkedList<Integer> path = new LinkedList<Integer>(); path.add(intersectNode); int i = intersectNode; while (i != s) { path.add(s_parent[i]); i = s_parent[i]; } Collections.reverse(path); i = intersectNode; while (i != t) { path.add(t_parent[i]); i = t_parent[i]; } System.out.println("*****Path*****"); for (int it : path) System.out.print(it + " "); System.out.println(); } // Method for bidirectional searching public int biDirSearch(int s, int t) { // Booleanean array for BFS started from // source and target(front and backward BFS) // for keeping track on visited nodes Boolean[] s_visited = new Boolean[V]; Boolean[] t_visited = new Boolean[V]; // Keep track on parents of nodes // for front and backward search int[] s_parent = new int[V]; int[] t_parent = new int[V]; // queue for front and backward search Queue<Integer> s_queue = new LinkedList<Integer>(); Queue<Integer> t_queue = new LinkedList<Integer>(); int intersectNode = -1; // necessary initialization for (int i = 0; i < V; i++) { s_visited[i] = false; t_visited[i] = false; } s_queue.add(s); s_visited[s] = true; // parent of source is set to -1 s_parent[s] = -1; t_queue.add(t); t_visited[t] = true; // parent of target is set to -1 t_parent[t] = -1; while (!s_queue.isEmpty() && !t_queue.isEmpty()) { // Do BFS from source and target vertices bfs(s_queue, s_visited, s_parent); bfs(t_queue, t_visited, t_parent); // check for intersecting vertex intersectNode = isIntersecting(s_visited, t_visited); // If intersecting vertex is found // that means there exist a path if (intersectNode != -1) { System.out.printf( "Path exist between %d and %d\n", s, t); System.out.printf("Intersection at: %d\n", intersectNode); // print the path and exit the program printPath(s_parent, t_parent, s, t, intersectNode); System.exit(0); } } return -1; } } public class GFG { // Driver code public static void main(String[] args) { // no of vertices in graph int n = 15; // source vertex int s = 0; // target vertex int t = 14; // create a graph given in above diagram Graph g = new Graph(n); g.addEdge(0, 4); g.addEdge(1, 4); g.addEdge(2, 5); g.addEdge(3, 5); g.addEdge(4, 6); g.addEdge(5, 6); g.addEdge(6, 7); g.addEdge(7, 8); g.addEdge(8, 9); g.addEdge(8, 10); g.addEdge(9, 11); g.addEdge(9, 12); g.addEdge(10, 13); g.addEdge(10, 14); if (g.biDirSearch(s, t) == -1) System.out.printf( "Path don't exist between %d and %d", s, t); } } // This code is contributed by cavi4762.
Python3
# Python3 program for Bidirectional BFS # Search to check path between two vertices # Class definition for node to # be added to graph class AdjacentNode: def __init__(self, vertex): self.vertex = vertex self.next = None # BidirectionalSearch implementation class BidirectionalSearch: def __init__(self, vertices): # Initialize vertices and # graph with vertices self.vertices = vertices self.graph = [None] * self.vertices # Initializing queue for forward # and backward search self.src_queue = list() self.dest_queue = list() # Initializing source and # destination visited nodes as False self.src_visited = [False] * self.vertices self.dest_visited = [False] * self.vertices # Initializing source and destination # parent nodes self.src_parent = [None] * self.vertices self.dest_parent = [None] * self.vertices # Function for adding undirected edge def add_edge(self, src, dest): # Add edges to graph # Add source to destination node = AdjacentNode(dest) node.next = self.graph[src] self.graph[src] = node # Since graph is undirected add # destination to source node = AdjacentNode(src) node.next = self.graph[dest] self.graph[dest] = node # Function for Breadth First Search def bfs(self, direction = 'forward'): if direction == 'forward': # BFS in forward direction current = self.src_queue.pop(0) connected_node = self.graph[current] while connected_node: vertex = connected_node.vertex if not self.src_visited[vertex]: self.src_queue.append(vertex) self.src_visited[vertex] = True self.src_parent[vertex] = current connected_node = connected_node.next else: # BFS in backward direction current = self.dest_queue.pop(0) connected_node = self.graph[current] while connected_node: vertex = connected_node.vertex if not self.dest_visited[vertex]: self.dest_queue.append(vertex) self.dest_visited[vertex] = True self.dest_parent[vertex] = current connected_node = connected_node.next # Check for intersecting vertex def is_intersecting(self): # Returns intersecting node # if present else -1 for i in range(self.vertices): if (self.src_visited[i] and self.dest_visited[i]): return i return -1 # Print the path from source to target def print_path(self, intersecting_node, src, dest): # Print final path from # source to destination path = list() path.append(intersecting_node) i = intersecting_node while i != src: path.append(self.src_parent[i]) i = self.src_parent[i] path = path[::-1] i = intersecting_node while i != dest: path.append(self.dest_parent[i]) i = self.dest_parent[i] print("*****Path*****") path = list(map(str, path)) print(' '.join(path)) # Function for bidirectional searching def bidirectional_search(self, src, dest): # Add source to queue and mark # visited as True and add its # parent as -1 self.src_queue.append(src) self.src_visited[src] = True self.src_parent[src] = -1 # Add destination to queue and # mark visited as True and add # its parent as -1 self.dest_queue.append(dest) self.dest_visited[dest] = True self.dest_parent[dest] = -1 while self.src_queue and self.dest_queue: # BFS in forward direction from # Source Vertex self.bfs(direction = 'forward') # BFS in reverse direction # from Destination Vertex self.bfs(direction = 'backward') # Check for intersecting vertex intersecting_node = self.is_intersecting() # If intersecting vertex exists # then path from source to # destination exists if intersecting_node != -1: print(f"Path exists between {src} and {dest}") print(f"Intersection at : {intersecting_node}") self.print_path(intersecting_node, src, dest) exit(0) return -1 # Driver code if __name__ == '__main__': # Number of Vertices in graph n = 15 # Source Vertex src = 0 # Destination Vertex dest = 14 # Create a graph graph = BidirectionalSearch(n) graph.add_edge(0, 4) graph.add_edge(1, 4) graph.add_edge(2, 5) graph.add_edge(3, 5) graph.add_edge(4, 6) graph.add_edge(5, 6) graph.add_edge(6, 7) graph.add_edge(7, 8) graph.add_edge(8, 9) graph.add_edge(8, 10) graph.add_edge(9, 11) graph.add_edge(9, 12) graph.add_edge(10, 13) graph.add_edge(10, 14) out = graph.bidirectional_search(src, dest) if out == -1: print(f"Path does not exist between {src} and {dest}") # This code is contributed by Nirjhari Jankar
C#
// C# program for Bidirectional BFS search // to check path between two vertices using System; using System.Collections.Generic; // class representing undirected graph // using adjacency list public class Graph { // number of nodes in graph private int V; // Adjacency list private List<int>[] adj; // Constructor public Graph(int v) { V = v; adj = new List<int>[ v ]; for (int i = 0; i < v; i++) adj[i] = new List<int>(); } // Method for adding undirected edge public void AddEdge(int u, int v) { adj[u].Add(v); adj[v].Add(u); } // Method for Breadth First Search public void BFS(Queue<int> queue, bool[] visited, int[] parent) { int current = queue.Dequeue(); foreach(int i in adj[current]) { // If adjacent vertex is not visited earlier // mark it visited by assigning true value if (!visited[i]) { // set current as parent of this vertex parent[i] = current; // Mark this vertex visited visited[i] = true; // Push to the end of queue queue.Enqueue(i); } } } // check for intersecting vertex public int IsIntersecting(bool[] s_visited, bool[] t_visited) { for (int i = 0; i < V; i++) { // if a vertex is visited by both front // and back BFS search return that node // else return -1 if (s_visited[i] && t_visited[i]) return i; } return -1; } // Print the path from source to target public void PrintPath(int[] s_parent, int[] t_parent, int s, int t, int intersectNode) { List<int> path = new List<int>(); path.Add(intersectNode); int i = intersectNode; while (i != s) { path.Add(s_parent[i]); i = s_parent[i]; } path.Reverse(); i = intersectNode; while (i != t) { path.Add(t_parent[i]); i = t_parent[i]; } Console.WriteLine("*****Path*****"); foreach(int it in path) Console.Write(it + " "); Console.WriteLine(); } // Method for bidirectional searching public int BiDirSearch(int s, int t) { // boolean array for BFS started from // source and target(front and backward BFS) // for keeping track on visited nodes bool[] s_visited = new bool[V]; bool[] t_visited = new bool[V]; // Keep track on parents of nodes // for front and backward search int[] s_parent = new int[V]; int[] t_parent = new int[V]; // queue for front and backward search Queue<int> s_queue = new Queue<int>(); Queue<int> t_queue = new Queue<int>(); int intersectNode = -1; // necessary initialization for (int i = 0; i < V; i++) { s_visited[i] = false; t_visited[i] = false; } s_queue.Enqueue(s); s_visited[s] = true; // parent of source is set to -1 s_parent[s] = -1; t_queue.Enqueue(t); t_visited[t] = true; // parent of target is set to -1 t_parent[t] = -1; while (s_queue.Count > 0 && t_queue.Count > 0) { // Do BFS from source and target vertices BFS(s_queue, s_visited, s_parent); BFS(t_queue, t_visited, t_parent); // check for intersecting vertex intersectNode = IsIntersecting(s_visited, t_visited); // If intersecting vertex is found // that means there exist a path if (intersectNode != -1) { Console.WriteLine( "Path exist between {0} and {1}", s, t); Console.WriteLine("Intersection at: {0}", intersectNode); // print the path and exit the program PrintPath(s_parent, t_parent, s, t, intersectNode); Environment.Exit(0); } } return -1; } } public class GFG { // Driver code static void Main(string[] args) { // no of vertices in graph int n = 15; // source vertex int s = 0; // target vertex int t = 14; // create a graph given in above diagram Graph g = new Graph(n); g.AddEdge(0, 4); g.AddEdge(1, 4); g.AddEdge(2, 5); g.AddEdge(3, 5); g.AddEdge(4, 6); g.AddEdge(5, 6); g.AddEdge(6, 7); g.AddEdge(7, 8); g.AddEdge(8, 9); g.AddEdge(8, 10); g.AddEdge(9, 11); g.AddEdge(9, 12); g.AddEdge(10, 13); g.AddEdge(10, 14); if (g.BiDirSearch(s, t) == -1) Console.WriteLine( "Path don't exist between {0} and {1}", s, t); } } // This code is contributed by cavi4762.
Producción:
Path exist between 0 and 14 Intersection at: 7 *****Path***** 0 4 6 7 8 10 14
Referencias
Este artículo es una contribución de Atul Kumar . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA