Dada una string que contiene caracteres alfabéticos inferiores, necesitamos encontrar una substring de esta string cuyo producto de longitud y frecuencia en la string sea el máximo entre todas las opciones posibles de substrings.
Ejemplos:
Input : String str = “abddab” Output : 6 All unique substring with product of their frequency and length are, Val["a"] = 2 * 1 = 2 Val["ab"] = 2 * 2 = 4 Val["abd"] = 1 * 3 = 3 Val["abdd"] = 1 * 4 = 4 Val["abdda"] = 1 * 5 = 5 Val["abddab"] = 1 * 6 = 6 Val["b"] = 2 * 1 = 2 Val["bd"] = 1 * 2 = 2 Val["bdd"] = 1 * 3 = 3 Val["bdda"] = 1 * 4 = 4 Val["bddab"] = 1 * 5 = 5 Val["d"] = 2 * 1 = 2 Val["da"] = 1 * 2 = 2 Val["dab"] = 1 * 3 = 3 Val["dd"] = 1 * 2 = 2 Val["dda"] = 1 * 3 = 3 Val["ddab"] = 1 * 4 = 4 Input : String str = “zzzzzz” Output : 12 In above string maximum value 12 can be obtained with substring “zzzz”
Una solución simple es considerar todas las substrings una por una. Para cada substring, cuente el número de ocurrencias en la string completa.
Una solución eficiente para resolver este problema construyendo primero la array de prefijos comunes más larga , ahora supongamos que el valor de lcp[i] es K, entonces podemos decir que el sufijo i-ésimo y (i+1)-ésimo tiene un prefijo de longitud K en común, es decir, hay es una substring de longitud K que se repite dos veces. De la misma manera, sean tres valores consecutivos de lcp (K, K-2, K+1), entonces podemos decir que hay una substring de longitud (K-2) que se repite tres veces en la string.
Ahora, después de la observación anterior, podemos ver que nuestro resultado será un rango de array lcp cuyo elemento más pequeño multiplicado por el número de elementos en el rango es máximo porque el rango corresponderá a la frecuencia de la string y el elemento más pequeño del rango corresponderá a la longitud de repitiendo la string ahora, este problema reformado se puede resolver de manera similar al problema del rectángulo más grande en el histograma .
En el siguiente código, la array lcp está construida por el algoritmo de Kasai .
CPP
// C++ program to find substring with highest // frequency length product #include <bits/stdc++.h> using namespace std; // Structure to store information of a suffix struct suffix { int index; // To store original index int rank[2]; // To store ranks and next rank pair }; // A comparison function used by sort() to compare // two suffixes. Compares two pairs, returns 1 if // first pair is smaller int cmp(struct suffix a, struct suffix b) { return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0): (a.rank[0] < b.rank[0] ?1: 0); } // This is the main function that takes a string // 'txt' of size n as an argument, builds and // return the suffix array for the given string vector<int> buildSuffixArray(string txt, int n) { // A structure to store suffixes and their indexes struct suffix suffixes[n]; // Store suffixes and their indexes in an array // of structures. The structure is needed to sort // the suffixes alphabetically and maintain their // old indexes while sorting for (int i = 0; i < n; i++) { suffixes[i].index = i; suffixes[i].rank[0] = txt[i] - 'a'; suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1; } // Sort the suffixes using the comparison function // defined above. sort(suffixes, suffixes+n, cmp); // At his point, all suffixes are sorted according to first // 2 characters. Let us sort suffixes according to first 4 // characters, then first 8 and so on // This array is needed to get the index in suffixes[] // from original index. This mapping is needed to get // next suffix. int ind[n]; for (int k = 4; k < 2*n; k = k*2) { // Assigning rank and index values to first suffix int rank = 0; int prev_rank = suffixes[0].rank[0]; suffixes[0].rank[0] = rank; ind[suffixes[0].index] = 0; // Assigning rank to suffixes for (int i = 1; i < n; i++) { // If first rank and next ranks are same as // that of previous suffix in array, assign // the same new rank to this suffix if (suffixes[i].rank[0] == prev_rank && suffixes[i].rank[1] == suffixes[i-1].rank[1]) { prev_rank = suffixes[i].rank[0]; suffixes[i].rank[0] = rank; } else // Otherwise increment rank and assign { prev_rank = suffixes[i].rank[0]; suffixes[i].rank[0] = ++rank; } ind[suffixes[i].index] = i; } // Assign next rank to every suffix for (int i = 0; i < n; i++) { int nextindex = suffixes[i].index + k/2; suffixes[i].rank[1] = (nextindex < n)? suffixes[ind[nextindex]].rank[0]: -1; } // Sort the suffixes according to first k characters sort(suffixes, suffixes+n, cmp); } // Store indexes of all sorted suffixes in the suffix array vector<int>suffixArr; for (int i = 0; i < n; i++) suffixArr.push_back(suffixes[i].index); // Return the suffix array return suffixArr; } /* To construct and return LCP */ vector<int> kasai(string txt, vector<int> suffixArr) { int n = suffixArr.size(); // To store LCP array vector<int> lcp(n, 0); // An auxiliary array to store inverse of suffix array // elements. For example if suffixArr[0] is 5, the // invSuff[5] would store 0. This is used to get next // suffix string from suffix array. vector<int> invSuff(n, 0); // Fill values in invSuff[] for (int i=0; i < n; i++) invSuff[suffixArr[i]] = i; // Initialize length of previous LCP int k = 0; // Process all suffixes one by one starting from // first suffix in txt[] for (int i=0; i<n; i++) { /* If the current suffix is at n-1, then we don’t have next substring to consider. So lcp is not defined for this substring, we put zero. */ if (invSuff[i] == n-1) { k = 0; continue; } /* j contains index of the next substring to be considered to compare with the present substring, i.e., next string in suffix array */ int j = suffixArr[invSuff[i]+1]; // Directly start matching from k'th index as // at-least k-1 characters will match while (i+k<n && j+k<n && txt[i+k]==txt[j+k]) k++; lcp[invSuff[i]] = k; // lcp for the present suffix. // Deleting the starting character from the string. if (k>0) k--; } // return the constructed lcp array return lcp; } // method to get LCP array vector<int> getLCPArray(string str) { vector<int>suffixArr = buildSuffixArray(str, str.length()); return kasai(str, suffixArr); } // The main function to find the maximum rectangular // area under given histogram with n bars int getMaxArea(int hist[], int n) { // Create an empty stack. The stack holds indexes // of hist[] array. The bars stored in stack are // always in increasing order of their heights. stack<int> s; int max_area = 0; // Initialize max area int tp; // To store top of stack // To store area with top bar as the smallest bar int area_with_top; // Run through all bars of given histogram int i = 0; while (i < n) { // If this bar is higher than the bar on // top stack, push it to stack if (s.empty() || hist[s.top()] <= hist[i]) s.push(i++); // If this bar is lower than top of stack, // then calculate area of rectangle with // stack top as the smallest (or minimum // height) bar. 'i' is 'right index' for // the top and element before top in stack // is 'left index' else { tp = s.top(); // store the top index s.pop(); // pop the top // Calculate the area with hist[tp] // stack as smallest bar area_with_top = hist[tp] * (s.empty() ? (i + 1) : i - s.top()); // update max area, if needed if (max_area < area_with_top) max_area = area_with_top; } } // Now pop the remaining bars from stack // and calculate area with every // popped bar as the smallest bar while (s.empty() == false) { tp = s.top(); s.pop(); area_with_top = hist[tp] * (s.empty() ? (i + 1) : i - s.top()); if (max_area < area_with_top) max_area = area_with_top; } return max_area; } // Returns maximum product of frequency and length // of a substring. int maxProductOfFreqLength(string str) { // get LCP array by Kasai's algorithm vector<int> lcp = getLCPArray(str); int hist[lcp.size()]; // copy lcp array into hist array for (int i = 0; i < lcp.size(); i++) hist[i] = lcp[i]; // get the maximum area under lcp histogram int substrMaxValue = getMaxArea(hist, lcp.size()); // if string length itself is greater than // histogram area, then return that if (str.length() > substrMaxValue) return str.length(); else return substrMaxValue; } // Driver code to test above methods int main() { string str = "abddab"; cout << maxProductOfFreqLength(str) << endl; return 0; }
6
Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA