Dado un árbol binario que contiene n Nodes. El problema es encontrar e imprimir el mayor valor presente en cada nivel.
Ejemplos:
Input : 1 / \ 2 3 Output : 1 3 Input : 4 / \ 9 2 / \ \ 3 5 7 Output : 4 9 7
Enfoque: En la publicación anterior , se ha discutido un método recursivo. En esta publicación se ha discutido un método iterativo. La idea es realizar un recorrido de orden de nivel iterativo del árbol binario usando la cola. Mientras se recorre, mantenga la variable max que almacena el elemento máximo del nivel actual del árbol que se está procesando. Cuando el nivel esté completamente recorrido, imprima ese valor máximo .
C++
// C++ implementation to print largest // value in each level of Binary Tree #include <bits/stdc++.h> using namespace std; // structure of a node of binary tree struct Node { int data; Node *left, *right; }; // function to get a new node Node* newNode(int data) { // allocate space Node* temp = new Node; // put in the data temp->data = data; temp->left = temp->right = NULL; return temp; } // function to print largest value // in each level of Binary Tree void largestValueInEachLevel(Node* root) { // if tree is empty if (!root) return; queue<Node*> q; int nc, max; // push root to the queue 'q' q.push(root); while (1) { // node count for the current level nc = q.size(); // if true then all the nodes of // the tree have been traversed if (nc == 0) break; // maximum element for the current // level max = INT_MIN; while (nc--) { // get the front element from 'q' Node* front = q.front(); // remove front element from 'q' q.pop(); // if true, then update 'max' if (max < front->data) max = front->data; // if left child exists if (front->left) q.push(front->left); // if right child exists if (front->right) q.push(front->right); } // print maximum element of // current level cout << max << " "; } } // Driver code int main() { /* Construct a Binary Tree 4 / \ 9 2 / \ \ 3 5 7 */ Node* root = NULL; root = newNode(4); root->left = newNode(9); root->right = newNode(2); root->left->left = newNode(3); root->left->right = newNode(5); root->right->right = newNode(7); // Function call largestValueInEachLevel(root); return 0; }
Java
// Java implementation to print largest // value in each level of Binary Tree import java.util.*; class GfG { // structure of a node of binary tree static class Node { int data; Node left = null; Node right = null; } // function to get a new node static Node newNode(int val) { // allocate space Node temp = new Node(); // put in the data temp.data = val; temp.left = null; temp.right = null; return temp; } // function to print largest value // in each level of Binary Tree static void largestValueInEachLevel(Node root) { // if tree is empty if (root == null) return; Queue<Node> q = new LinkedList<Node>(); int nc, max; // push root to the queue 'q' q.add(root); while (true) { // node count for the current level nc = q.size(); // if true then all the nodes of // the tree have been traversed if (nc == 0) break; // maximum element for the current // level max = Integer.MIN_VALUE; while (nc != 0) { // get the front element from 'q' Node front = q.peek(); // remove front element from 'q' q.remove(); // if true, then update 'max' if (max < front.data) max = front.data; // if left child exists if (front.left != null) q.add(front.left); // if right child exists if (front.right != null) q.add(front.right); nc--; } // print maximum element of // current level System.out.println(max + " "); } } // Driver code public static void main(String[] args) { /* Construct a Binary Tree 4 / \ 9 2 / \ \ 3 5 7 */ Node root = null; root = newNode(4); root.left = newNode(9); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); root.right.right = newNode(7); // Function call largestValueInEachLevel(root); } }
Python3
# Python program to print largest value # on each level of binary tree INT_MIN = -2147483648 # Helper function that allocates a new # node with the given data and None left # and right pointers. class newNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # function to find largest values def largestValueInEachLevel(root): if (not root): return q = [] nc = 10 max = 0 q.append(root) while (1): # node count for the current level nc = len(q) # if true then all the nodes of # the tree have been traversed if (nc == 0): break # maximum element for the current # level max = INT_MIN while (nc): # get the front element from 'q' front = q[0] # remove front element from 'q' q = q[1:] # if true, then update 'max' if (max < front.data): max = front.data # if left child exists if (front.left): q.append(front.left) # if right child exists if (front.right != None): q.append(front.right) nc -= 1 # print maximum element of # current level print(max, end=" ") # Driver Code if __name__ == '__main__': """ Let us construct the following Tree 4 / \ 9 2 / \ \ 3 5 7 """ root = newNode(4) root.left = newNode(9) root.right = newNode(2) root.left.left = newNode(3) root.left.right = newNode(5) root.right.right = newNode(7) # Function call largestValueInEachLevel(root) # This code is contributed # Shubham Singh(SHUBHAMSINGH10)
C#
// C# implementation to print largest // value in each level of Binary Tree using System; using System.Collections.Generic; class GfG { // structure of a node of binary tree class Node { public int data; public Node left = null; public Node right = null; } // function to get a new node static Node newNode(int val) { // allocate space Node temp = new Node(); // put in the data temp.data = val; temp.left = null; temp.right = null; return temp; } // function to print largest value // in each level of Binary Tree static void largestValueInEachLevel(Node root) { // if tree is empty if (root == null) return; Queue<Node> q = new Queue<Node>(); int nc, max; // push root to the queue 'q' q.Enqueue(root); while (true) { // node count for the current level nc = q.Count; // if true then all the nodes of // the tree have been traversed if (nc == 0) break; // maximum element for the current // level max = int.MinValue; while (nc != 0) { // get the front element from 'q' Node front = q.Peek(); // remove front element from 'q' q.Dequeue(); // if true, then update 'max' if (max < front.data) max = front.data; // if left child exists if (front.left != null) q.Enqueue(front.left); // if right child exists if (front.right != null) q.Enqueue(front.right); nc--; } // print maximum element of // current level Console.Write(max + " "); } } // Driver code public static void Main(String[] args) { /* Construct a Binary Tree 4 / \ 9 2 / \ \ 3 5 7 */ Node root = null; root = newNode(4); root.left = newNode(9); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); root.right.right = newNode(7); // Function call largestValueInEachLevel(root); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript implementation to print largest // value in each level of Binary Tree // structure of a node of binary tree class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // function to get a new node function newNode(val) { // allocate space let temp = new Node(val); return temp; } // function to print largest value // in each level of Binary Tree function largestValueInEachLevel(root) { // if tree is empty if (root == null) return; let q = []; let nc, max; // push root to the queue 'q' q.push(root); while (true) { // node count for the current level nc = q.length; // if true then all the nodes of // the tree have been traversed if (nc == 0) break; // maximum element for the current // level max = Number.MIN_VALUE; while (nc != 0) { // get the front element from 'q' let front = q[0]; // remove front element from 'q' q.shift(); // if true, then update 'max' if (max < front.data) max = front.data; // if left child exists if (front.left != null) q.push(front.left); // if right child exists if (front.right != null) q.push(front.right); nc--; } // print maximum element of // current level document.write(max + " "); } } /* Construct a Binary Tree 4 / \ 9 2 / \ \ 3 5 7 */ let root = null; root = newNode(4); root.left = newNode(9); root.right = newNode(2); root.left.left = newNode(3); root.left.right = newNode(5); root.right.right = newNode(7); // Function call largestValueInEachLevel(root); </script>
Publicación traducida automáticamente
Artículo escrito por ayushjauhari14 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA