Mayor valor en cada nivel del árbol binario | Conjunto-2 (enfoque iterativo)

Dado un árbol binario que contiene n Nodes. El problema es encontrar e imprimir el mayor valor presente en cada nivel.
Ejemplos: 

Input :
        1
       / \
      2   3 
Output : 1 3

Input : 
        4
       / \
      9   2
     / \   \
    3   5   7 
Output : 4 9 7

Enfoque: En la publicación anterior , se ha discutido un método recursivo. En esta publicación se ha discutido un método iterativo. La idea es realizar un recorrido de orden de nivel iterativo del árbol binario usando la cola. Mientras se recorre, mantenga la variable max que almacena el elemento máximo del nivel actual del árbol que se está procesando. Cuando el nivel esté completamente recorrido, imprima ese valor máximo .  

C++

// C++ implementation to print largest
// value in each level of Binary Tree
#include <bits/stdc++.h>
  
using namespace std;
  
// structure of a node of binary tree
struct Node {
    int data;
    Node *left, *right;
};
  
// function to get a new node
Node* newNode(int data)
{
    // allocate space
    Node* temp = new Node;
  
    // put in the data
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// function to print largest value
// in each level of Binary Tree
void largestValueInEachLevel(Node* root)
{
    // if tree is empty
    if (!root)
        return;
  
    queue<Node*> q;
    int nc, max;
  
    // push root to the queue 'q'
    q.push(root);
  
    while (1) {
        // node count for the current level
        nc = q.size();
  
        // if true then all the nodes of
        // the tree have been traversed
        if (nc == 0)
            break;
  
        // maximum element for the current
        // level
        max = INT_MIN;
  
        while (nc--) {
  
            // get the front element from 'q'
            Node* front = q.front();
  
            // remove front element from 'q'
            q.pop();
  
            // if true, then update 'max'
            if (max < front->data)
                max = front->data;
  
            // if left child exists
            if (front->left)
                q.push(front->left);
  
            // if right child exists
            if (front->right)
                q.push(front->right);
        }
  
        // print maximum element of
        // current level
        cout << max << " ";
    }
}
  
// Driver code
int main()
{
    /* Construct a Binary Tree
        4
       / \
      9   2
     / \   \
    3   5   7 */
  
    Node* root = NULL;
    root = newNode(4);
    root->left = newNode(9);
    root->right = newNode(2);
    root->left->left = newNode(3);
    root->left->right = newNode(5);
    root->right->right = newNode(7);
  
    // Function call
    largestValueInEachLevel(root);
  
    return 0;
}

Java

// Java implementation to print largest
// value in each level of Binary Tree
import java.util.*;
class GfG {
  
    // structure of a node of binary tree
    static class Node 
    {
        int data;
        Node left = null;
        Node right = null;
    }
  
    // function to get a new node
    static Node newNode(int val)
    {
        // allocate space
        Node temp = new Node();
  
        // put in the data
        temp.data = val;
        temp.left = null;
        temp.right = null;
        return temp;
    }
  
    // function to print largest value
    // in each level of Binary Tree
    static void largestValueInEachLevel(Node root)
    {
        // if tree is empty
        if (root == null)
            return;
  
        Queue<Node> q = new LinkedList<Node>();
        int nc, max;
  
        // push root to the queue 'q'
        q.add(root);
  
        while (true) 
        {
            // node count for the current level
            nc = q.size();
  
            // if true then all the nodes of
            // the tree have been traversed
            if (nc == 0)
                break;
  
            // maximum element for the current
            // level
            max = Integer.MIN_VALUE;
  
            while (nc != 0) 
            {
  
                // get the front element from 'q'
                Node front = q.peek();
  
                // remove front element from 'q'
                q.remove();
  
                // if true, then update 'max'
                if (max < front.data)
                    max = front.data;
  
                // if left child exists
                if (front.left != null)
                    q.add(front.left);
  
                // if right child exists
                if (front.right != null)
                    q.add(front.right);
                nc--;
            }
  
            // print maximum element of
            // current level
            System.out.println(max + " ");
        }
    }
  
    // Driver code
    public static void main(String[] args)
    {
        /* Construct a Binary Tree
            4
        / \
        9 2
        / \ \
        3 5 7 */
  
        Node root = null;
        root = newNode(4);
        root.left = newNode(9);
        root.right = newNode(2);
        root.left.left = newNode(3);
        root.left.right = newNode(5);
        root.right.right = newNode(7);
  
        // Function call
        largestValueInEachLevel(root);
    }
}

Python3

# Python program to print largest value
# on each level of binary tree
  
INT_MIN = -2147483648
  
# Helper function that allocates a new
# node with the given data and None left
# and right pointers.
  
  
class newNode:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# function to find largest values
  
  
def largestValueInEachLevel(root):
    if (not root):
        return
    q = []
    nc = 10
    max = 0
    q.append(root)
    while (1):
        # node count for the current level
        nc = len(q)
  
        # if true then all the nodes of
        # the tree have been traversed
        if (nc == 0):
            break
  
        # maximum element for the current
        # level
        max = INT_MIN
        while (nc):
  
            # get the front element from 'q'
            front = q[0]
  
            # remove front element from 'q'
            q = q[1:]
  
            # if true, then update 'max'
            if (max < front.data):
                max = front.data
  
            # if left child exists
            if (front.left):
                q.append(front.left)
  
            # if right child exists
            if (front.right != None):
                q.append(front.right)
            nc -= 1
  
        # print maximum element of
        # current level
        print(max, end=" ")
  
  
# Driver Code
if __name__ == '__main__':
    """ Let us construct the following Tree
        4 
        / \ 
        9 2 
    / \ \
    3 5 7 """
    root = newNode(4)
    root.left = newNode(9)
    root.right = newNode(2)
    root.left.left = newNode(3)
    root.left.right = newNode(5)
    root.right.right = newNode(7)
      
    # Function call
    largestValueInEachLevel(root)
  
# This code is contributed
# Shubham Singh(SHUBHAMSINGH10)

C#

// C# implementation to print largest
// value in each level of Binary Tree
using System;
using System.Collections.Generic;
  
class GfG
{
  
    // structure of a node of binary tree
    class Node 
    {
        public int data;
        public Node left = null;
        public Node right = null;
    }
  
    // function to get a new node
    static Node newNode(int val)
    {
        // allocate space
        Node temp = new Node();
  
        // put in the data
        temp.data = val;
        temp.left = null;
        temp.right = null;
        return temp;
    }
  
    // function to print largest value
    // in each level of Binary Tree
    static void largestValueInEachLevel(Node root)
    {
        // if tree is empty
        if (root == null)
            return;
  
        Queue<Node> q = new Queue<Node>();
        int nc, max;
  
        // push root to the queue 'q'
        q.Enqueue(root);
  
        while (true) 
        {
            // node count for the current level
            nc = q.Count;
  
            // if true then all the nodes of
            // the tree have been traversed
            if (nc == 0)
                break;
  
            // maximum element for the current
            // level
            max = int.MinValue;
  
            while (nc != 0) 
            {
                // get the front element from 'q'
                Node front = q.Peek();
  
                // remove front element from 'q'
                q.Dequeue();
  
                // if true, then update 'max'
                if (max < front.data)
                    max = front.data;
  
                // if left child exists
                if (front.left != null)
                    q.Enqueue(front.left);
  
                // if right child exists
                if (front.right != null)
                    q.Enqueue(front.right);
                nc--;
            }
  
            // print maximum element of
            // current level
            Console.Write(max + " ");
        }
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        /* Construct a Binary Tree
            4
        / \
        9 2
        / \ \
        3 5 7 */
  
        Node root = null;
        root = newNode(4);
        root.left = newNode(9);
        root.right = newNode(2);
        root.left.left = newNode(3);
        root.left.right = newNode(5);
        root.right.right = newNode(7);
  
        // Function call
        largestValueInEachLevel(root);
    }
}
  
// This code is contributed by PrinciRaj1992

Javascript

<script>
  
    // JavaScript implementation to print largest
    // value in each level of Binary Tree
      
    // structure of a node of binary tree
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
  
    // function to get a new node
    function newNode(val)
    {
        // allocate space
        let temp = new Node(val);
        return temp;
    }
    
    // function to print largest value
    // in each level of Binary Tree
    function largestValueInEachLevel(root)
    {
        // if tree is empty
        if (root == null)
            return;
    
        let q = [];
        let nc, max;
    
        // push root to the queue 'q'
        q.push(root);
    
        while (true) 
        {
            // node count for the current level
            nc = q.length;
    
            // if true then all the nodes of
            // the tree have been traversed
            if (nc == 0)
                break;
    
            // maximum element for the current
            // level
            max = Number.MIN_VALUE;
    
            while (nc != 0) 
            {
    
                // get the front element from 'q'
                let front = q[0];
    
                // remove front element from 'q'
                q.shift();
    
                // if true, then update 'max'
                if (max < front.data)
                    max = front.data;
    
                // if left child exists
                if (front.left != null)
                    q.push(front.left);
    
                // if right child exists
                if (front.right != null)
                    q.push(front.right);
                nc--;
            }
    
            // print maximum element of
            // current level
            document.write(max + " ");
        }
    }
      
    /* Construct a Binary Tree
           4
          / \
          9 2
          / \ \
          3 5 7 */
  
    let root = null;
    root = newNode(4);
    root.left = newNode(9);
    root.right = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(5);
    root.right.right = newNode(7);
  
    // Function call
    largestValueInEachLevel(root);
      
</script>

Publicación traducida automáticamente

Artículo escrito por ayushjauhari14 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *