Dado un árbol binario, ¿cómo elimina todos los medios Nodes (que solo tiene un hijo)? Las hojas de nota no deben tocarse ya que tienen ambos hijos como NULL.
Por ejemplo, considere el siguiente árbol.
C
// C program to remove all half nodes #include <stdio.h> #include <stdlib.h> struct node { int data; struct node* left, *right; }; struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->data = data; node->left = node->right = NULL; return(node); } void printInoder(struct node*root) { if (root != NULL) { printInoder(root->left); printf("%d ",root->data); printInoder(root->right); } } // Removes all nodes with only one child and returns // new root (note that root may change) struct node* RemoveHalfNodes(struct node* root) { if (root==NULL) return NULL; root->left = RemoveHalfNodes(root->left); root->right = RemoveHalfNodes(root->right); if (root->left==NULL && root->right==NULL) return root; /* if current nodes is a half node with left child NULL left, then it's right child is returned and replaces it in the given tree */ if (root->left==NULL) { struct node *new_root = root->right; free(root); // To avoid memory leak return new_root; } /* if current nodes is a half node with right child NULL right, then it's right child is returned and replaces it in the given tree */ if (root->right==NULL) { struct node *new_root = root->left; free(root); // To avoid memory leak return new_root; } return root; } // Driver program int main(void) { struct node*NewRoot=NULL; struct node *root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->right->left=newNode(1); root->left->right->right=newNode(11); root->right->right=newNode(9); root->right->right->left=newNode(4); printf("Inorder traversal of given tree \n"); printInoder(root); NewRoot = RemoveHalfNodes(root); printf("\nInorder traversal of the modified tree \n"); printInoder(NewRoot); return 0; }
C++
// C++ program to remove all half nodes #include <bits/stdc++.h> using namespace std; struct node { int data; struct node* left, *right; }; struct node* newNode(int data) { node* nod = new node(); nod->data = data; nod->left = nod->right = NULL; return(nod); } void printInoder(struct node*root) { if (root != NULL) { printInoder(root->left); cout<< root->data << " "; printInoder(root->right); } } // Removes all nodes with only one child and returns // new root (note that root may change) struct node* RemoveHalfNodes(struct node* root) { if (root==NULL) return NULL; root->left = RemoveHalfNodes(root->left); root->right = RemoveHalfNodes(root->right); if (root->left==NULL && root->right==NULL) return root; /* if current nodes is a half node with left child NULL left, then it's right child is returned and replaces it in the given tree */ if (root->left==NULL) { struct node *new_root = root->right; free(root); // To avoid memory leak return new_root; } /* if current nodes is a half node with right child NULL right, then it's right child is returned and replaces it in the given tree */ if (root->right==NULL) { struct node *new_root = root->left; free(root); // To avoid memory leak return new_root; } return root; } // Driver program int main(void) { struct node*NewRoot=NULL; struct node *root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->right->left=newNode(1); root->left->right->right=newNode(11); root->right->right=newNode(9); root->right->right->left=newNode(4); cout<<"Inorder traversal of given tree \n"; printInoder(root); NewRoot = RemoveHalfNodes(root); cout<<"\nInorder traversal of the modified tree \n"; printInoder(NewRoot); return 0; }
Java
// Java program to remove half nodes class Node { int data; Node left, right; Node(int item) { data = item; left = right = null; } } class BinaryTree { Node root; void printInorder(Node node) { if (node != null) { printInorder(node.left); System.out.print(node.data + " "); printInorder(node.right); } } // Removes all nodes with only one child and returns // new root (note that root may change) Node RemoveHalfNodes(Node node) { if (node == null) return null; node.left = RemoveHalfNodes(node.left); node.right = RemoveHalfNodes(node.right); /* if current node is a leaf node then return it without modifying it */ if (node.left == null && node.right == null) return node; /* if current nodes is a half node with left child NULL left, then it's right child is returned and replaces it in the given tree */ if (node.left == null) { Node new_root = node.right; return new_root; } /* if current nodes is a half node with right child NULL right, then it's left child is returned and replaces it in the given tree */ if (node.right == null) { Node new_root = node.left; return new_root; } return node; } // Driver program public static void main(String args[]) { BinaryTree tree = new BinaryTree(); Node NewRoot = null; tree.root = new Node(2); tree.root.left = new Node(7); tree.root.right = new Node(5); tree.root.left.right = new Node(6); tree.root.left.right.left = new Node(1); tree.root.left.right.right = new Node(11); tree.root.right.right = new Node(9); tree.root.right.right.left = new Node(4); System.out.println("the inorder traversal of tree is "); tree.printInorder(tree.root); NewRoot = tree.RemoveHalfNodes(tree.root); System.out.print("\nInorder traversal of the modified tree \n"); tree.printInorder(NewRoot); } } // This code has been contributed by Mayank Jaiswal
Python3
# Python program to remove all half nodes # A binary tree node class Node: # Constructor for creating a new node def __init__(self , data): self.data = data self.left = None self.right = None # For inorder traversal def printInorder(root): if root is not None: printInorder(root.left) print (root.data,end=" ") printInorder(root.right) # Removes all nodes with only one child and returns # new root(note that root may change) def RemoveHalfNodes(root): if root is None: return None # Recur to left tree root.left = RemoveHalfNodes(root.left) # Recur to right tree root.right = RemoveHalfNodes(root.right) # if both left and right child is None # the node is not a Half node if root.left is None and root.right is None: return root # If current nodes is a half node with left child # None then it's right child is returned and # replaces it in the given tree if root.left is None: new_root = root.right temp = root root = None del(temp) return new_root if root.right is None: new_root = root.left temp = root root = None del(temp) return new_root return root # Driver Program root = Node(2) root.left = Node(7) root.right = Node(5) root.left.right = Node(6) root.left.right.left = Node(1) root.left.right.right = Node(11) root.right.right = Node(9) root.right.right.left = Node(4) print ("Inorder traversal of given tree") printInorder(root) NewRoot = RemoveHalfNodes(root) print ("\nInorder traversal of the modified tree") printInorder(NewRoot) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
using System; // C# program to remove half nodes public class Node { public int data; public Node left, right; public Node(int item) { data = item; left = right = null; } } public class BinaryTree { public Node root; public virtual void printInorder(Node node) { if (node != null) { printInorder(node.left); Console.Write(node.data + " "); printInorder(node.right); } } // Removes all nodes with only one child and returns // new root (note that root may change) public virtual Node RemoveHalfNodes(Node node) { if (node == null) { return null; } node.left = RemoveHalfNodes(node.left); node.right = RemoveHalfNodes(node.right); if (node.left == null && node.right == null) { return node; } /* if current nodes is a half node with left child NULL left, then it's right child is returned and replaces it in the given tree */ if (node.left == null) { Node new_root = node.right; return new_root; } /* if current nodes is a half node with right child NULL right, then it's right child is returned and replaces it in the given tree */ if (node.right == null) { Node new_root = node.left; return new_root; } return node; } // Driver program public static void Main(string[] args) { BinaryTree tree = new BinaryTree(); Node NewRoot = null; tree.root = new Node(2); tree.root.left = new Node(7); tree.root.right = new Node(5); tree.root.left.right = new Node(6); tree.root.left.right.left = new Node(1); tree.root.left.right.right = new Node(11); tree.root.right.right = new Node(9); tree.root.right.right.left = new Node(4); Console.WriteLine("the inorder traversal of tree is "); tree.printInorder(tree.root); NewRoot = tree.RemoveHalfNodes(tree.root); Console.Write("\nInorder traversal of the modified tree \n"); tree.printInorder(NewRoot); } } // This code is contributed by Shrikant13
Javascript
Java <script> // javascript program to remove half nodes class Node { constructor(item) { this.data = item; this.left = this.right = null; } } var root; function printInorder( node) { if (node != null) { printInorder(node.left); document.write(node.data + " "); printInorder(node.right); } } // Removes all nodes with only one child and returns // new root (note that root may change) function RemoveHalfNodes( node) { if (node == null) return null; node.left = RemoveHalfNodes(node.left); node.right = RemoveHalfNodes(node.right); if (node.left == null && node.right == null) return node; /* * if current nodes is a half node with left child NULL left, then it's right * child is returned and replaces it in the given tree */ if (node.left == null) { new_root = node.right; return new_root; } /* * if current nodes is a half node with right child NULL right, then it's right * child is returned and replaces it in the given tree */ if (node.right == null) { new_root = node.left; return new_root; } return node; } // Driver program NewRoot = null; root = new Node(2); root.left = new Node(7); root.right = new Node(5); root.left.right = new Node(6); root.left.right.left = new Node(1); root.left.right.right = new Node(11); root.right.right = new Node(9); root.right.right.left = new Node(4); document.write("the inorder traversal of tree is <br/>"); printInorder(root); NewRoot = RemoveHalfNodes(root); document.write("<br/>Inorder traversal of the modified tree <br/>"); printInorder(NewRoot); // This code contributed by gauravrajput1 </script> script
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA