Dado un árbol binario, encuentre el Node de hoja más profundo que queda como hijo de su padre. Por ejemplo, considere el siguiente árbol. El Node de hoja izquierdo más profundo es el Node con valor 9.
1 / \ 2 3 / / \ 4 5 6 \ \ 7 8 / \ 9 10
La idea es recorrer recursivamente el árbol binario dado y, mientras lo atraviesa, mantener el «nivel», que almacenará el nivel del Node actual en el árbol. Si el Node actual es la hoja izquierda, compruebe si su nivel es mayor que el nivel de la hoja izquierda más profunda vista hasta ahora. Si el nivel es mayor, actualice el resultado. Si el Node actual no es una hoja, busque recursivamente la profundidad máxima en los subárboles izquierdo y derecho, y devuelva el máximo de las dos profundidades. Gracias a Coder011 por sugerir este enfoque.
C++
// A C++ program to find the deepest left leaf in a given binary tree #include <bits/stdc++.h> using namespace std; struct Node { int val; struct Node *left, *right; }; Node *newNode(int data) { Node *temp = new Node; temp->val = data; temp->left = temp->right = NULL; return temp; } // A utility function to find deepest leaf node. // lvl: level of current node. // maxlvl: pointer to the deepest left leaf node found so far // isLeft: A bool indicate that this node is left child of its parent // resPtr: Pointer to the result void deepestLeftLeafUtil(Node *root, int lvl, int *maxlvl, bool isLeft, Node **resPtr) { // Base case if (root == NULL) return; // Update result if this node is left leaf and its level is more // than the maxl level of the current result if (isLeft && !root->left && !root->right && lvl > *maxlvl) { *resPtr = root; *maxlvl = lvl; return; } // Recur for left and right subtrees deepestLeftLeafUtil(root->left, lvl+1, maxlvl, true, resPtr); deepestLeftLeafUtil(root->right, lvl+1, maxlvl, false, resPtr); } // A wrapper over deepestLeftLeafUtil(). Node* deepestLeftLeaf(Node *root) { int maxlevel = 0; Node *result = NULL; deepestLeftLeafUtil(root, 0, &maxlevel, false, &result); return result; } // Driver program to test above function int main() { Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->right->left = newNode(5); root->right->right = newNode(6); root->right->left->right = newNode(7); root->right->right->right = newNode(8); root->right->left->right->left = newNode(9); root->right->right->right->right = newNode(10); Node *result = deepestLeftLeaf(root); if (result) cout << "The deepest left child is " << result->val; else cout << "There is no left leaf in the given tree"; return 0; }
Java
// A Java program to find // the deepest left leaf // in a binary tree // A Binary Tree node class Node { int data; Node left, right; // Constructor public Node(int data) { this.data = data; left = right = null; } } // Class to evaluate pass // by reference class Level { // maxlevel: gives the // value of level of // maximum left leaf int maxlevel = 0; } class BinaryTree { Node root; // Node to store resultant // node after left traversal Node result; // A utility function to // find deepest leaf node. // lvl: level of current node. // isLeft: A bool indicate // that this node is left child void deepestLeftLeafUtil(Node node, int lvl, Level level, boolean isLeft) { // Base case if (node == null) return; // Update result if this node // is left leaf and its level // is more than the maxl level // of the current result if (isLeft != false && node.left == null && node.right == null && lvl > level.maxlevel) { result = node; level.maxlevel = lvl; } // Recur for left and right subtrees deepestLeftLeafUtil(node.left, lvl + 1, level, true); deepestLeftLeafUtil(node.right, lvl + 1, level, false); } // A wrapper over deepestLeftLeafUtil(). void deepestLeftLeaf(Node node) { Level level = new Level(); deepestLeftLeafUtil(node, 0, level, false); } // Driver program to test above functions public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.right.left = new Node(5); tree.root.right.right = new Node(6); tree.root.right.left.right = new Node(7); tree.root.right.right.right = new Node(8); tree.root.right.left.right.left = new Node(9); tree.root.right.right.right.right = new Node(10); tree.deepestLeftLeaf(tree.root); if (tree.result != null) System.out.println("The deepest left child"+ " is " + tree.result.data); else System.out.println("There is no left leaf in"+ " the given tree"); } } // This code has been contributed by Mayank Jaiswal(mayank_24)
Python3
# Python program to find the deepest left leaf in a given # Binary tree # A binary tree node class Node: # Constructor to create a new node def __init__(self, val): self.val = val self.left = None self.right = None # A utility function to find deepest leaf node. # lvl: level of current node. # maxlvl: pointer to the deepest left leaf node found so far # isLeft: A bool indicate that this node is left child # of its parent # resPtr: Pointer to the result def deepestLeftLeafUtil(root, lvl, maxlvl, isLeft): # Base CAse if root is None: return # Update result if this node is left leaf and its # level is more than the max level of the current result if(isLeft is True): if (root.left == None and root.right == None): if lvl > maxlvl[0] : deepestLeftLeafUtil.resPtr = root maxlvl[0] = lvl return # Recur for left and right subtrees deepestLeftLeafUtil(root.left, lvl+1, maxlvl, True) deepestLeftLeafUtil(root.right, lvl+1, maxlvl, False) # A wrapper for left and right subtree def deepestLeftLeaf(root): maxlvl = [0] deepestLeftLeafUtil.resPtr = None deepestLeftLeafUtil(root, 0, maxlvl, False) return deepestLeftLeafUtil.resPtr # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.right.left = Node(5) root.right.right = Node(6) root.right.left.right = Node(7) root.right.right.right = Node(8) root.right.left.right.left = Node(9) root.right.right.right.right= Node(10) result = deepestLeftLeaf(root) if result is None: print ("There is not left leaf in the given tree") else: print ("The deepst left child is", result.val) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
using System; // A C# program to find // the deepest left leaf // in a binary tree // A Binary Tree node public class Node { public int data; public Node left, right; // Constructor public Node(int data) { this.data = data; left = right = null; } } // Class to evaluate pass // by reference public class Level { // maxlevel: gives the // value of level of // maximum left leaf public int maxlevel = 0; } public class BinaryTree { public Node root; // Node to store resultant // node after left traversal public Node result; // A utility function to // find deepest leaf node. // lvl: level of current node. // isLeft: A bool indicate // that this node is left child public virtual void deepestLeftLeafUtil(Node node, int lvl, Level level, bool isLeft) { // Base case if (node == null) { return; } // Update result if this node // is left leaf and its level // is more than the maxl level // of the current result if (isLeft != false && node.left == null && node.right == null && lvl > level.maxlevel) { result = node; level.maxlevel = lvl; } // Recur for left and right subtrees deepestLeftLeafUtil(node.left, lvl + 1, level, true); deepestLeftLeafUtil(node.right, lvl + 1, level, false); } // A wrapper over deepestLeftLeafUtil(). public virtual void deepestLeftLeaf(Node node) { Level level = new Level(); deepestLeftLeafUtil(node, 0, level, false); } // Driver program to test above functions public static void Main(string[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.right.left = new Node(5); tree.root.right.right = new Node(6); tree.root.right.left.right = new Node(7); tree.root.right.right.right = new Node(8); tree.root.right.left.right.left = new Node(9); tree.root.right.right.right.right = new Node(10); tree.deepestLeftLeaf(tree.root); if (tree.result != null) { Console.WriteLine("The deepest left child is " + tree.result.data); } else { Console.WriteLine("There is no left leaf in the given tree"); } } } // This code is contributed by Shrikant13
Javascript
<script> // A Javascript program to find // the deepest left leaf // in a binary tree class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } let maxlevel = 0; let root; // Node to store resultant // node after left traversal let result; // A utility function to // find deepest leaf node. // lvl: level of current node. // isLeft: A bool indicate // that this node is left child function deepestLeftLeafUtil(node, lvl, isLeft) { // Base case if (node == null) return; // Update result if this node // is left leaf and its level // is more than the maxl level // of the current result if (isLeft != false && node.left == null && node.right == null && lvl > maxlevel) { result = node; maxlevel = lvl; } // Recur for left and right subtrees deepestLeftLeafUtil(node.left, lvl + 1, true); deepestLeftLeafUtil(node.right, lvl + 1, false); } // A wrapper over deepestLeftLeafUtil(). function deepestLeftLeaf(node) { deepestLeftLeafUtil(node, 0, false); } // Driver code root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.right.left = new Node(5); root.right.right = new Node(6); root.right.left.right = new Node(7); root.right.right.right = new Node(8); root.right.left.right.left = new Node(9); root.right.right.right.right = new Node(10); deepestLeftLeaf(root); if (result != null) document.write("The deepest left child"+ " is " + result.data + "</br>"); else document.write("There is no left leaf in"+ " the given tree"); // This code is contributed by decode2207 </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA