Dado un árbol binario que contiene n Nodes. El problema es verificar si el árbol binario dado es un árbol binario completo o no. Un árbol binario completo se define como un árbol binario en el que todos los Nodes tienen cero o dos Nodes secundarios. Por el contrario, no hay ningún Node en un árbol binario completo, que tiene solo un Node hijo.
Ejemplos:
Input : 1 / \ 2 3 / \ 4 5 Output : Yes Input : 1 / \ 2 3 / 4 Output :No
Enfoque: En la publicación anterior se ha discutido una solución recursiva. En este post se ha seguido un enfoque iterativo. Realice un recorrido de orden de nivel iterativo del árbol utilizando la cola. Para cada Node encontrado, siga los pasos que se indican a continuación:
- Si (Node->izquierda == NULL && Node->derecha == NULL), es un Node hoja. Deséchelo y comience a procesar el siguiente Node de la cola.
- Si (Node->izquierda == NULL || Node->derecha == NULL), significa que solo está presente el hijo del Node . Devuelve false ya que el árbol binario no es un árbol binario completo.
- De lo contrario, empuje los elementos secundarios izquierdo y derecho del Node a la cola.
Si todos los Nodes de la cola se procesan sin devolver falso, devuelve verdadero ya que el árbol binario es un árbol binario completo.
C++
// C++ implementation to check whether a binary // tree is a full binary tree or not #include <bits/stdc++.h> using namespace std; // structure of a node of binary tree struct Node { int data; Node *left, *right; }; // function to get a new node Node* getNode(int data) { // allocate space Node* newNode = (Node*)malloc(sizeof(Node)); // put in the data newNode->data = data; newNode->left = newNode->right = NULL; return newNode; } // function to check whether a binary tree // is a full binary tree or not bool isFullBinaryTree(Node* root) { // if tree is empty if (!root) return true; // queue used for level order traversal queue<Node*> q; // push 'root' to 'q' q.push(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (!q.empty()) { // get the pointer to 'node' at front // of queue Node* node = q.front(); q.pop(); // if it is a leaf node then continue if (node->left == NULL && node->right == NULL) continue; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node->left == NULL || node->right == NULL) return false; // push left and right childs of 'node' // on to the queue 'q' q.push(node->left); q.push(node->right); } // binary tree is a full binary tee return true; } // Driver program to test above int main() { Node* root = getNode(1); root->left = getNode(2); root->right = getNode(3); root->left->left = getNode(4); root->left->right = getNode(5); if (isFullBinaryTree(root)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java implementation to check whether a binary // tree is a full binary tree or not import java.util.*; class GfG { // structure of a node of binary tree static class Node { int data; Node left, right; } // function to get a new node static Node getNode(int data) { // allocate space Node newNode = new Node(); // put in the data newNode.data = data; newNode.left = null; newNode.right = null; return newNode; } // function to check whether a binary tree // is a full binary tree or not static boolean isFullBinaryTree(Node root) { // if tree is empty if (root == null) return true; // queue used for level order traversal Queue<Node> q = new LinkedList<Node> (); // push 'root' to 'q' q.add(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (!q.isEmpty()) { // get the pointer to 'node' at front // of queue Node node = q.peek(); q.remove(); // if it is a leaf node then continue if (node.left == null && node.right == null) continue; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null) return false; // push left and right childs of 'node' // on to the queue 'q' q.add(node.left); q.add(node.right); } // binary tree is a full binary tee return true; } // Driver program to test above public static void main(String[] args) { Node root = getNode(1); root.left = getNode(2); root.right = getNode(3); root.left.left = getNode(4); root.left.right = getNode(5); if (isFullBinaryTree(root)) System.out.println("Yes"); else System.out.println("No"); } }
Python3
# Python3 program to find deepest # left leaf Binary search Tree # Helper function that allocates a # new node with the given data and # None left and right pairs. class getNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # function to check whether a binary # tree is a full binary tree or not def isFullBinaryTree( root) : # if tree is empty if (not root) : return True # queue used for level order # traversal q = [] # append 'root' to 'q' q.append(root) # traverse all the nodes of the # binary tree level by level # until queue is empty while (not len(q)): # get the pointer to 'node' # at front of queue node = q[0] q.pop(0) # if it is a leaf node then continue if (node.left == None and node.right == None): continue # if either of the child is not None # and the other one is None, then # binary tree is not a full binary tee if (node.left == None or node.right == None): return False # append left and right childs # of 'node' on to the queue 'q' q.append(node.left) q.append(node.right) # binary tree is a full binary tee return True # Driver Code if __name__ == '__main__': root = getNode(1) root.left = getNode(2) root.right = getNode(3) root.left.left = getNode(4) root.left.right = getNode(5) if (isFullBinaryTree(root)) : print("Yes" ) else: print("No") # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
C#
// C# implementation to check whether a binary // tree is a full binary tree or not using System; using System.Collections.Generic; class GfG { // structure of a node of binary tree public class Node { public int data; public Node left, right; } // function to get a new node static Node getNode(int data) { // allocate space Node newNode = new Node(); // put in the data newNode.data = data; newNode.left = null; newNode.right = null; return newNode; } // function to check whether a binary tree // is a full binary tree or not static bool isFullBinaryTree(Node root) { // if tree is empty if (root == null) return true; // queue used for level order traversal Queue<Node> q = new Queue<Node> (); // push 'root' to 'q' q.Enqueue(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (q.Count!=0) { // get the pointer to 'node' at front // of queue Node node = q.Peek(); q.Dequeue(); // if it is a leaf node then continue if (node.left == null && node.right == null) continue; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null) return false; // push left and right childs of 'node' // on to the queue 'q' q.Enqueue(node.left); q.Enqueue(node.right); } // binary tree is a full binary tee return true; } // Driver code public static void Main(String[] args) { Node root = getNode(1); root.left = getNode(2); root.right = getNode(3); root.left.left = getNode(4); root.left.right = getNode(5); if (isFullBinaryTree(root)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code has been contributed by 29AjayKumar
Javascript
<script> // JavaScript implementation to check whether a binary // tree is a full binary tree or not // A Binary Tree Node class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // function to get a new node function getNode(data) { // allocate space let newNode = new Node(data); return newNode; } // function to check whether a binary tree // is a full binary tree or not function isFullBinaryTree(root) { // if tree is empty if (root == null) return true; // queue used for level order traversal let q = []; // push 'root' to 'q' q.push(root); // traverse all the nodes of the binary tree // level by level until queue is empty while (q.length > 0) { // get the pointer to 'node' at front // of queue let node = q[0]; q.shift(); // if it is a leaf node then continue if (node.left == null && node.right == null) continue; // if either of the child is not null and the // other one is null, then binary tree is not // a full binary tee if (node.left == null || node.right == null) return false; // push left and right childs of 'node' // on to the queue 'q' q.push(node.left); q.push(node.right); } // binary tree is a full binary tee return true; } let root = getNode(1); root.left = getNode(2); root.right = getNode(3); root.left.left = getNode(4); root.left.right = getNode(5); if (isFullBinaryTree(root)) document.write("Yes"); else document.write("No"); </script>
Yes
Complejidad temporal: O(n).
Espacio auxiliar: O(max), donde max es el número máximo de Nodes en un nivel particular.
Publicación traducida automáticamente
Artículo escrito por ayushjauhari14 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA