Dado un número n, la tarea es encontrar la suma de factores impares.
Ejemplos:
Input : n = 30 Output : 24 Odd dividers sum 1 + 3 + 5 + 15 = 24 Input : 18 Output : 13 Odd dividers sum 1 + 3 + 9 = 13
Prerrequisito : Suma de todos los factores de un número
Como se discutió en la publicación anterior mencionada anteriormente , la suma de los factores de un número es Sean
p 1 , p 2 , … p k factores primos de n. Sean a 1 , a 2 , .. a k potencias máximas de p 1 , p 2 , .. p k respectivamente que dividen n, es decir, podemos escribir n como n = (p 1 a 1 )*(p 2 a 2 )* … (p k a k ) .
Sum of divisors = (1 + p1 + p12 ... p1a1) * (1 + p2 + p22 ... p2a2) * ............................................. (1 + pk + pk2 ... pkak)
Para encontrar la suma de los factores impares, simplemente debemos ignorar los factores pares y sus poderes. Por ejemplo, considere n = 18. Se puede escribir como 2 1 3 2 y el sol de todos los factores es (1)*(1 + 2)*(1 + 3 + 3 2 ). Suma de factores impares (1)*(1+3+3 2 ) = 13.
Para eliminar todos los factores pares, dividimos repetidamente n mientras sea divisible por 2. Después de este paso, solo obtenemos factores impares. Tenga en cuenta que 2 es el único primo par.
C++
// Formula based CPP program // to find sum of all // divisors of n. #include <bits/stdc++.h> using namespace std; // Returns sum of all factors of n. int sumofoddFactors(int n) { // Traversing through all // prime factors. int res = 1; // ignore even factors by // removing all powers of // 2 while (n % 2 == 0) n = n / 2; for (int i = 3; i <= sqrt(n); i++) { // While i divides n, print // i and divide n int count = 0, curr_sum = 1; int curr_term = 1; while (n % i == 0) { count++; n = n / i; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle // the case when n is a prime // number. if (n >= 2) res *= (1 + n); return res; } // Driver code int main() { int n = 30; cout << sumofoddFactors(n); return 0; }
Java
// Formula based Java program // to find sum of all divisors // of n. import java.io.*; import java.math.*; class GFG { // Returns sum of all // factors of n. static int sumofoddFactors(int n) { // Traversing through // all prime factors. int res = 1; // ignore even factors by // removing all powers // of 2 while (n % 2 == 0) n = n / 2; for (int i = 3; i <= Math.sqrt(n); i++) { // While i divides n, print i // and divide n int count = 0, curr_sum = 1; int curr_term = 1; while (n % i == 0) { count++; n = n / i; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle // the case when n is a // prime number. if (n >= 2) res *= (1 + n); return res; } // Driver code public static void main(String args[]) throws IOException { int n = 30; System.out.println(sumofoddFactors(n)); } } /* This code is contributed by Nikita Tiwari.*/
Python3
# Formula based Python3 program # to find sum of all divisors # of n. import math # Returns sum of all factors # of n. def sumofoddFactors( n ): # Traversing through all # prime factors. res = 1 # ignore even factors by # of 2 while n % 2 == 0: n = n // 2 for i in range(3, int(math.sqrt(n) + 1)): # While i divides n, print # i and divide n count = 0 curr_sum = 1 curr_term = 1 while n % i == 0: count+=1 n = n // i curr_term *= i curr_sum += curr_term res *= curr_sum # This condition is to # handle the case when # n is a prime number. if n >= 2: res *= (1 + n) return res # Driver code n = 30 print(sumofoddFactors(n)) # This code is contributed by "Sharad_Bhardwaj".
C#
// Formula based C# program to // find sum of all divisors of n. using System; class GFG { // Returns sum of all // factors of n. static int sumofoddFactors(int n) { // Traversing through // all prime factors. int res = 1; // ignore even factors by // removing all powers // of 2 while (n % 2 == 0) n = n / 2; for (int i = 3; i <= Math.Sqrt(n); i++) { // While i divides n, print i // and divide n int count = 0, curr_sum = 1; int curr_term = 1; while (n % i == 0) { count++; n = n / i; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle // the case when n is a // prime number. if (n >= 2) res *= (1 + n); return res; } // Driver code public static void Main(String[] argc) { int n = 30; Console.Write(sumofoddFactors(n)); } } /* This code is contributed by parashar...*/
PHP
<?php // Formula based PHP program // to find sum of all // divisors of n. // Returns sum of all factors of n. function sumofoddFactors($n) { // Traversing through all // prime factors. $res = 1; // ignore even factors by // removing all powers of // 2 while ($n % 2 == 0) $n = $n / 2; for ($i = 3; $i <= sqrt($n); $i++) { // While i divides n, print // i and divide n $count = 0; $curr_sum = 1; $curr_term = 1; while ($n % $i == 0) { $count++; $n = $n / $i; $curr_term *= $i; $curr_sum += $curr_term; } $res *= $curr_sum; } // This condition is to // handle the case when // n is a prime number. if ($n >= 2) $res *= (1 + $n); return $res; } // Driver code $n = 30; echo sumofoddFactors($n); // This code is contributed // by nitin mittal. ?>
Javascript
<script> // Formula based Javascript program // to find sum of all // divisors of n. // Returns sum of all factors of n. function sumofoddFactors(n) { // Traversing through all // prime factors. let res = 1; // ignore even factors by // removing all powers of // 2 while (n % 2 == 0) n = n / 2; for (let i = 3; i <= Math.sqrt(n); i++) { // While i divides n, print // i and divide n let count = 0; let curr_sum = 1; let curr_term = 1; while (n % i == 0) { count++; n = n / i; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to // handle the case when // n is a prime number. if (n >= 2) res *= (1 + n); return res; } // Driver code let n = 30; document.write(sumofoddFactors(n)); // This code is contributed by _saurabh_jaiswal </script>
Producción :
24
Complejidad del tiempo : O(sqrt(n))
Espacio Auxiliar : O(1)
Publicación traducida automáticamente
Artículo escrito por DevanshuAgarwal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA