Dado un conjunto de n strings arr[], encuentra la string más pequeña que contiene cada string en el conjunto dado como substring. Podemos suponer que ninguna string en arr[] es una substring de otra string.
Ejemplos:
Input: arr[] = {"geeks", "quiz", "for"} Output: geeksquizfor Input: arr[] = {"catg", "ctaagt", "gcta", "ttca", "atgcatc"} Output: gctaagttcatgcatc
Algoritmo aproximado codicioso de superstring más corto
El problema de la supercuerda más corta es un problema NP difícil . Una solución que siempre encuentra la supercuerda más corta toma un tiempo exponencial. A continuación se muestra un algoritmo codicioso aproximado.
Let arr[] be given set of strings. 1) Create an auxiliary array of strings, temp[]. Copy contents of arr[] to temp[] 2) While temp[] contains more than one strings a) Find the most overlapping string pair in temp[]. Let this pair be 'a' and 'b'. b) Replace 'a' and 'b' with the string obtained after combining them. 3) The only string left in temp[] is the result, return it.
Dos strings se superponen si el prefijo de una string es el mismo sufijo de otra string o viceversa. La longitud media de superposición máxima del prefijo y el sufijo coincidentes es máxima.
Funcionamiento del algoritmo anterior:
arr[] = {"catgc", "ctaagt", "gcta", "ttca", "atgcatc"} Initialize: temp[] = {"catgc", "ctaagt", "gcta", "ttca", "atgcatc"} The most overlapping strings are "catgc" and "atgcatc" (Suffix of length 4 of "catgc" is same as prefix of "atgcatc") Replace two strings with "catgcatc", we get temp[] = {"catgcatc", "ctaagt", "gcta", "ttca"} The most overlapping strings are "ctaagt" and "gcta" (Prefix of length 3 of "ctaagt" is same as suffix of "gcta") Replace two strings with "gctaagt", we get temp[] = {"catgcatc", "gctaagt", "ttca"} The most overlapping strings are "catgcatc" and "ttca" (Prefix of length 2 of "catgcatc" as suffix of "ttca") Replace two strings with "ttcatgcatc", we get temp[] = {"ttcatgcatc", "gctaagt"} Now there are only two strings in temp[], after combing the two in optimal way, we get tem[] = {"gctaagttcatgcatc"} Since temp[] has only one string now, return it.
A continuación se muestra la implementación del algoritmo anterior.
C++
// C++ program to find shortest // superstring using Greedy // Approximate Algorithm #include <bits/stdc++.h> using namespace std; // Utility function to calculate // minimum of two numbers int min(int a, int b) { return (a < b) ? a : b; } // Function to calculate maximum // overlap in two given strings int findOverlappingPair(string str1, string str2, string &str) { // Max will store maximum // overlap i.e maximum // length of the matching // prefix and suffix int max = INT_MIN; int len1 = str1.length(); int len2 = str2.length(); // Check suffix of str1 matches // with prefix of str2 for (int i = 1; i <= min(len1, len2); i++) { // Compare last i characters // in str1 with first i // characters in str2 if (str1.compare(len1-i, i, str2, 0, i) == 0) { if (max < i) { // Update max and str max = i; str = str1 + str2.substr(i); } } } // Check prefix of str1 matches // with suffix of str2 for (int i = 1; i <= min(len1, len2); i++) { // compare first i characters // in str1 with last i // characters in str2 if (str1.compare(0, i, str2, len2-i, i) == 0) { if (max < i) { // Update max and str max = i; str = str2 + str1.substr(i); } } } return max; } // Function to calculate // smallest string that contains // each string in the given // set as substring. string findShortestSuperstring(string arr[], int len) { // Run len-1 times to // consider every pair while(len != 1) { // To store maximum overlap int max = INT_MIN; // To store array index of strings int l, r; // Involved in maximum overlap string resStr; // Maximum overlap for (int i = 0; i < len; i++) { for (int j = i + 1; j < len; j++) { string str; // res will store maximum // length of the matching // prefix and suffix str is // passed by reference and // will store the resultant // string after maximum // overlap of arr[i] and arr[j], // if any. int res = findOverlappingPair(arr[i], arr[j], str); // check for maximum overlap if (max < res) { max = res; resStr.assign(str); l = i, r = j; } } } // Ignore last element in next cycle len--; // If no overlap, append arr[len] to arr[0] if (max == INT_MIN) arr[0] += arr[len]; else { // Copy resultant string to index l arr[l] = resStr; // Copy string at last index to index r arr[r] = arr[len]; } } return arr[0]; } // Driver program int main() { string arr[] = {"catgc", "ctaagt", "gcta", "ttca", "atgcatc"}; int len = sizeof(arr)/sizeof(arr[0]); // Function Call cout << "The Shortest Superstring is " << findShortestSuperstring(arr, len); return 0; } // This code is contributed by Aditya Goel
Java
// Java program to find shortest // superstring using Greedy // Approximate Algorithm import java.io.*; import java.util.*; class GFG { static String str; // Utility function to calculate // minimum of two numbers static int min(int a, int b) { return (a < b) ? a : b; } // Function to calculate maximum // overlap in two given strings static int findOverlappingPair(String str1, String str2) { // max will store maximum // overlap i.e maximum // length of the matching // prefix and suffix int max = Integer.MIN_VALUE; int len1 = str1.length(); int len2 = str2.length(); // check suffix of str1 matches // with prefix of str2 for (int i = 1; i <= min(len1, len2); i++) { // compare last i characters // in str1 with first i // characters in str2 if (str1.substring(len1 - i).compareTo( str2.substring(0, i)) == 0) { if (max < i) { // Update max and str max = i; str = str1 + str2.substring(i); } } } // check prefix of str1 matches // with suffix of str2 for (int i = 1; i <= min(len1, len2); i++) { // compare first i characters // in str1 with last i // characters in str2 if (str1.substring(0, i).compareTo( str2.substring(len2 - i)) == 0) { if (max < i) { // update max and str max = i; str = str2 + str1.substring(i); } } } return max; } // Function to calculate smallest // string that contains // each string in the given set as substring. static String findShortestSuperstring( String arr[], int len) { // run len-1 times to consider every pair while (len != 1) { // To store maximum overlap int max = Integer.MIN_VALUE; // To store array index of strings // involved in maximum overlap int l = 0, r = 0; // to store resultant string after // maximum overlap String resStr = ""; for (int i = 0; i < len; i++) { for (int j = i + 1; j < len; j++) { // res will store maximum // length of the matching // prefix and suffix str is // passed by reference and // will store the resultant // string after maximum // overlap of arr[i] and arr[j], // if any. int res = findOverlappingPair (arr[i], arr[j]); // Check for maximum overlap if (max < res) { max = res; resStr = str; l = i; r = j; } } } // Ignore last element in next cycle len--; // If no overlap, // append arr[len] to arr[0] if (max == Integer.MIN_VALUE) arr[0] += arr[len]; else { // Copy resultant string // to index l arr[l] = resStr; // Copy string at last index // to index r arr[r] = arr[len]; } } return arr[0]; } // Driver Code public static void main(String[] args) { String[] arr = { "catgc", "ctaagt", "gcta", "ttca", "atgcatc" }; int len = arr.length; System.out.println("The Shortest Superstring is " + findShortestSuperstring(arr, len)); } } // This code is contributed by // sanjeev2552
C#
// C# program to find shortest // superstring using Greedy // Approximate Algorithm using System; class GFG { static String str; // Utility function to calculate // minimum of two numbers static int min(int a, int b) { return (a < b) ? a : b; } // Function to calculate maximum // overlap in two given strings static int findOverlappingPair(String str1, String str2) { // max will store maximum // overlap i.e maximum // length of the matching // prefix and suffix int max = Int32.MinValue; int len1 = str1.Length; int len2 = str2.Length; // check suffix of str1 matches // with prefix of str2 for (int i = 1; i <= min(len1, len2); i++) { // compare last i characters // in str1 with first i // characters in str2 if (str1.Substring(len1 - i).CompareTo( str2.Substring(0, i)) == 0) { if (max < i) { // Update max and str max = i; str = str1 + str2.Substring(i); } } } // check prefix of str1 matches // with suffix of str2 for (int i = 1; i <= min(len1, len2); i++) { // compare first i characters // in str1 with last i // characters in str2 if (str1.Substring(0, i).CompareTo( str2.Substring(len2 - i)) == 0) { if (max < i) { // update max and str max = i; str = str2 + str1.Substring(i); } } } return max; } // Function to calculate smallest // string that contains // each string in the given set as substring. static String findShortestSuperstring(String []arr, int len) { // run len-1 times to consider every pair while (len != 1) { // To store maximum overlap int max = Int32.MinValue; // To store array index of strings // involved in maximum overlap int l = 0, r = 0; // to store resultant string after // maximum overlap String resStr = ""; for (int i = 0; i < len; i++) { for (int j = i + 1; j < len; j++) { // res will store maximum // length of the matching // prefix and suffix str is // passed by reference and // will store the resultant // string after maximum // overlap of arr[i] and arr[j], // if any. int res = findOverlappingPair (arr[i], arr[j]); // Check for maximum overlap if (max < res) { max = res; resStr = str; l = i; r = j; } } } // Ignore last element in next cycle len--; // If no overlap, // append arr[len] to arr[0] if (max == Int32.MinValue) arr[0] += arr[len]; else { // Copy resultant string // to index l arr[l] = resStr; // Copy string at last index // to index r arr[r] = arr[len]; } } return arr[0]; } // Driver Code public static void Main(String[] args) { String[] arr = { "catgc", "ctaagt", "gcta", "ttca", "atgcatc" }; int len = arr.Length; Console.Write("The Shortest Superstring is " + findShortestSuperstring(arr, len)); } } // This code is contributed by shivanisinghss2110
The Shortest Superstring is gctaagttcatgcatc
Rendimiento del algoritmo anterior:
Se demuestra que el Algoritmo Greedy anterior es 4 aproximado (es decir, la longitud de la superstring generada por este algoritmo nunca supera 4 veces la superstring más corta posible). Este algoritmo se conjetura a 2 aproximados (nadie ha encontrado un caso en el que genere más del doble del peor). El ejemplo del peor caso conjeturado es {ab k , b k c, b k+1 }. Por ejemplo {“abb”, “bbc”, “bbb”}, el algoritmo anterior puede generar “abbcbbb” (si se eligen “abb” y “bbc” como primer par), pero la superstring más corta real es “abbbc”. Aquí la relación es 7/5, pero para k grande, la relación se aproxima a 2.
Otro enfoque:
Por «enfoque codicioso» quiero decir: cada vez que fusionamos las dos strings con una longitud máxima de superposición, las eliminamos de la array de strings y colocamos la string combinada en la array de strings.
Entonces el problema se convierte en: encontrar el camino más corto en este gráfico que visita cada Node exactamente una vez. Este es un problema del viajante de comercio.
Aplicar la solución DP del problema del vendedor ambulante. Recuerde registrar la ruta.
A continuación se muestra la implementación del enfoque anterior:
Java
// Java program for above approach import java.io.*; import java.util.*; class Solution { // Function to calculate shortest // super string public static String shortestSuperstring( String[] A) { int n = A.length; int[][] graph = new int[n][n]; // Build the graph for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { graph[i][j] = calc(A[i], A[j]); graph[j][i] = calc(A[j], A[i]); } } // Creating dp array int[][] dp = new int[1 << n][n]; // Creating path array int[][] path = new int[1 << n][n]; int last = -1, min = Integer.MAX_VALUE; // start TSP DP for (int i = 1; i < (1 << n); i++) { Arrays.fill(dp[i], Integer.MAX_VALUE); // Iterate j from 0 to n - 1 for (int j = 0; j < n; j++) { if ((i & (1 << j)) > 0) { int prev = i - (1 << j); // Check if prev is zero if (prev == 0) { dp[i][j] = A[j].length(); } else { // Iterate k from 0 to n - 1 for (int k = 0; k < n; k++) { if (dp[prev][k] < Integer.MAX_VALUE && dp[prev][k] + graph[k][j] < dp[i][j]) { dp[i][j] = dp[prev][k] + graph[k][j]; path[i][j] = k; } } } } if (i == (1 << n) - 1 && dp[i][j] < min) { min = dp[i][j]; last = j; } } } // Build the path StringBuilder sb = new StringBuilder(); int cur = (1 << n) - 1; // Creating a stack Stack<Integer> stack = new Stack<>(); // Until cur is zero // push last while (cur > 0) { stack.push(last); int temp = cur; cur -= (1 << last); last = path[temp][last]; } // Build the result int i = stack.pop(); sb.append(A[i]); // Until stack is empty while (!stack.isEmpty()) { int j = stack.pop(); sb.append(A[j].substring(A[j].length() - graph[i][j])); i = j; } return sb.toString(); } // Function to check public static int calc(String a, String b) { for (int i = 1; i < a.length(); i++) { if (b.startsWith(a.substring(i))) { return b.length() - a.length() + i; } } // Return size of b return b.length(); } // Driver Code public static void main(String[] args) { String[] arr = { "catgc", "ctaagt", "gcta", "ttca", "atgcatc" }; // Function Call System.out.println("The Shortest Superstring is " + shortestSuperstring(arr)); } }
The Shortest Superstring is gctaagttcatgcatc
Complejidad del tiempo: O(n^2 * 2^n)
Existen mejores algoritmos aproximados para este problema. Consulte el siguiente enlace.
Problema de la supercuerda más corta | Conjunto 2 (Usando Set Cover)
Aplicaciones:
útil en el proyecto del genoma, ya que permitirá a los investigadores determinar regiones de codificación completas a partir de una colección de secciones fragmentadas.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA