Dado un número grande como string s y un entero k que denota el número de puntos de interrupción, debemos poner el número k <= longitud de string. La tarea es encontrar el valor máximo del segmento después de colocar exactamente k puntos de ruptura. Ejemplos:
Input : s = "8754", k = 2 Output : Maximum number = 87 Explanation : We need to two breakpoints. After putting the breakpoints, we get following options 8 75 4 87 5 4 The maximum segment value is 87. Input : s = "999", k = 1 Output : Maximum Segment Value = 99 Explanation : We need to one breakpoint. After putting the breakpoint, we either get 99,9 or 9,99.
Una observación importante es que el máximo siempre sería de longitud «longitud de string – k», que es el valor máximo de cualquier segmento. Teniendo en cuenta el hecho, el problema se vuelve como un problema de ventana deslizante, lo que significa que necesitamos encontrar el máximo de todas las substrings de tamaño (longitud de string – k).
C++
// CPP program to find the maximum segment // value after putting k breaks. #include <bits/stdc++.h> using namespace std; // Function to Find Maximum Number int findMaxSegment(string &s, int k) { // Maximum segment length int seg_len = s.length() - k; // Find value of first segment of seg_len int res = 0; for (int i=0; i<seg_len; i++) res = res * 10 + (s[i] - '0'); // Find value of remaining segments using sliding // window int seg_len_pow = pow(10, seg_len-1); int curr_val = res; for (int i = 1; i <= (s.length() - seg_len); i++) { // To find value of current segment, first remove // leading digit from previous value curr_val = curr_val - (s[i-1]- '0')*seg_len_pow; // Then add trailing digit curr_val = curr_val*10 + (s[i+seg_len-1]- '0'); res = max(res, curr_val); } return res; } // Driver's Function int main() { string s = "8754"; int k = 2; cout << "Maximum number = " << findMaxSegment(s, k); return 0; }
Java
// Java program to find the maximum segment // value after putting k breaks. class GFG { // Function to Find Maximum Number static int findMaxSegment(String s, int k) { // Maximum segment length int seg_len = s.length() - k; // Find value of first segment of seg_len int res = 0; for (int i = 0; i < seg_len; i++) res = res * 10 + (s.charAt(i) - '0'); // Find value of remaining segments using // sliding window int seg_len_pow = (int)Math.pow(10, seg_len - 1); int curr_val = res; for (int i = 1; i <= (s.length() - seg_len); i++) { // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s.charAt(i - 1) - '0') * seg_len_pow; // Then add trailing digit curr_val = curr_val * 10 + (s.charAt(i + seg_len - 1) - '0'); res = Math.max(res, curr_val); } return res; } // Driver code public static void main(String[] args) { String s = "8754"; int k = 2; System.out.print("Maximum number = " + findMaxSegment(s, k)); } } // This code is contributed by Anant Agarwal.
Python3
# Python3 program to find the maximum segment # value after putting k breaks. # Function to Find Maximum Number def findMaxSegment(s, k): # Maximum segment length seg_len = len(s) - k # Find value of first segment of seg_len res = 0 for i in range(seg_len): res = res * 10 + (ord(s[i]) - ord('0')) # Find value of remaining segments # using sliding window seg_len_pow = pow(10, seg_len - 1) curr_val = res for i in range(1, len(s) - seg_len): # To find value of current segment, # first remove leading digit from # previous value curr_val = curr_val - (ord(s[i - 1])- ord('0')) * seg_len_pow # Then add trailing digit curr_val = (curr_val * 10 + (ord(s[i + seg_len - 1]) - ord('0'))) res = max(res, curr_val) return res # Driver Code if __name__ == '__main__': s = "8754" k = 2 print("Maximum number = ", findMaxSegment(s, k)) # This code is contributed by PranchalK
C#
// C# program to find the maximum segment // value after putting k breaks. using System; class GFG { // Function to Find Maximum Number static int findMaxSegment(string s, int k) { // Maximum segment length int seg_len = s.Length - k; // Find value of first segment of seg_len int res = 0; for (int i = 0; i < seg_len; i++) res = res * 10 + (s[i] - '0'); // Find value of remaining segments using // sliding window int seg_len_pow = (int)Math.Pow(10, seg_len - 1); int curr_val = res; for (int i = 1; i <= (s.Length- seg_len); i++) { // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s[i - 1] - '0') * seg_len_pow; // Then add trailing digit curr_val = curr_val * 10 + (s[i + seg_len - 1] - '0'); res = Math.Max(res, curr_val); } return res; } // Driver code public static void Main() { String s = "8754"; int k = 2; Console.WriteLine("Maximum number = " + findMaxSegment(s, k)); } } // This code is contributed by vt_m.
Javascript
<script> // JavaScript program to find the maximum segment // value after putting k breaks. // Function to Find Maximum Number function findMaxSegment(s, k){ // Maximum segment length let seg_len = s.length - k // Find value of first segment of seg_len let res = 0 for(let i=0;i<seg_len;i++) res = res * 10 + (s.charCodeAt(i) - '0'.charCodeAt(0)) // Find value of remaining segments // using sliding window let seg_len_pow = Math.pow(10, seg_len - 1) let curr_val = res for(let i = 1;i< s.length - seg_len;i++){ // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s.charCodeAt(i - 1)-'0'.charCodeAt(0)) * seg_len_pow // Then add trailing digit curr_val = (curr_val * 10 + (s.charCodeAt(i + seg_len - 1) - '0'.charCodeAt(0))) res = Math.max(res, curr_val) } return res } // Driver Code let s = "8754" let k = 2 document.writea("Maximum number = ",findMaxSegment(s, k)) // This code is contributed by shinjanpatra </script>
Producción:
Maximum number = 87
Complejidad temporal : O(n)
Espacio auxiliar : O(1)