Dada una string str de pequeños caracteres alfabéticos que no sean estos, se nos darán muchas substrings de esta string en forma de tuplas de índice. Necesitamos averiguar el recuento de las substrings palindrómicas en el rango de substrings dado.
Ejemplos:
Input : String str = "xyaabax" Range1 = (3, 5) Range2 = (2, 3) Output : 4 3 For Range1, substring is "aba" Count of palindromic substring in "aba" is four : "a", "b", "aba", "a" For Range2, substring is "aa" Count of palindromic substring in "aa" is 3 : "a", "a", "aa"
Requisito previo: contar todas las substrings de Palindrome en una string
Podemos resolver este problema usando programación dinámica. Primero haremos una array 2D isPalin, isPalin[i][j] será 1 si string(i..j) es un palíndromo, de lo contrario será 0. Después de construir isPalin construiremos otra array 2D dp, dp[i ][j] indicará el recuento de substrings palindrómicas en string(i..j)
Ahora podemos escribir la relación entre los valores de isPalin y dp como se muestra a continuación,
// isPalin[i][j] will be 1 if ith and jth characters // are equal and mid substring str(i+1..j-1) is also // a palindrome isPalin[i][j] = (str[i] == str[j]) and (isPalin[i + 1][j – 1]) // Similar to set theory we can write the relation among // dp values as, // dp[i][j] will be addition of number of palindromes from // i to j-1 and i+1 to j subtracting palindromes from i+1 // to j-1 because they are counted twice once in dp[i][j-1] // and then in dp[i + 1][j] plus 1 if str(i..j) is also a // palindrome dp[i][j] = dp[i][j-1] + dp[i+1][j] - dp[i+1][j-1] + isPalin[i][j];
La complejidad de tiempo total de la solución será O (longitud ^ 2) para construir una array dp y luego O (1) por consulta.
C++
// C++ program to query number of palindromic // substrings of a string in a range #include <bits/stdc++.h> using namespace std; #define M 50 // Utility method to construct the dp array void constructDP(int dp[M][M], string str) { int l = str.length(); // declare 2D array isPalin, isPalin[i][j] will // be 1 if str(i..j) is palindrome int isPalin[l + 1][l + 1]; // initialize dp and isPalin array by zeros for (int i = 0; i <= l; i++) { for (int j = 0; j <= l; j++) { isPalin[i][j] = dp[i][j] = 0; } } // loop for starting index of range for (int i = l - 1; i >= 0; i--) { // initialize value for one character strings as 1 isPalin[i][i] = 1; dp[i][i] = 1; // loop for ending index of range for (int j = i + 1; j < l; j++) { /* isPalin[i][j] will be 1 if ith and jth characters are equal and mid substring str(i+1..j-1) is also a palindrome */ isPalin[i][j] = (str[i] == str[j] && (i + 1 > j - 1 || isPalin[i + 1][j - 1])); /* dp[i][j] will be addition of number of palindromes from i to j-1 and i+1 to j subtracting palindromes from i+1 to j-1 (as counted twice) plus 1 if str(i..j) is also a palindrome */ dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1] + isPalin[i][j]; } } } // method returns count of palindromic substring in range (l, r) int countOfPalindromeInRange(int dp[M][M], int l, int r) { return dp[l][r]; } // Driver code to test above methods int main() { string str = "xyaabax"; int dp[M][M]; constructDP(dp, str); int l = 3; int r = 5; cout << countOfPalindromeInRange(dp, l, r); return 0; }
Java
// Java program to query number of palindromic // substrings of a string in a range import java.io.*; class GFG { // Function to construct the dp array static void constructDp(int dp[][], String str) { int l = str.length(); // declare 2D array isPalin, isPalin[i][j] will // be 1 if str(i..j) is palindrome int[][] isPalin = new int[l + 1][l + 1]; // initialize dp and isPalin array by zeros for (int i = 0; i <= l; i++) { for (int j = 0; j <= l; j++) { isPalin[i][j] = dp[i][j] = 0; } } // loop for starting index of range for (int i = l - 1; i >= 0; i--) { // initialize value for one character strings as 1 isPalin[i][i] = 1; dp[i][i] = 1; // loop for ending index of range for (int j = i + 1; j < l; j++) { /* isPalin[i][j] will be 1 if ith and jth characters are equal and mid substring str(i+1..j-1) is also a palindrome */ isPalin[i][j] = (str.charAt(i) == str.charAt(j) && (i + 1 > j - 1 || (isPalin[i + 1][j - 1]) != 0)) ? 1 : 0; /* dp[i][j] will be addition of number of palindromes from i to j-1 and i+1 to j subtracting palindromes from i+1 to j-1 (as counted twice) plus 1 if str(i..j) is also a palindrome */ dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1] + isPalin[i][j]; } } } // method returns count of palindromic substring in range (l, r) static int countOfPalindromeInRange(int dp[][], int l, int r) { return dp[l][r]; } // driver program public static void main(String args[]) { int MAX = 50; String str = "xyaabax"; int[][] dp = new int[MAX][MAX]; constructDp(dp, str); int l = 3; int r = 5; System.out.println(countOfPalindromeInRange(dp, l, r)); } } // Contributed by Pramod Kumar
Python3
# Python3 program to query the number of # palindromic substrings of a string in a range M = 50 # Utility method to construct the dp array def constructDP(dp, string): l = len(string) # declare 2D array isPalin, isPalin[i][j] # will be 1 if str(i..j) is palindrome # and initialize it with zero isPalin = [[0 for i in range(l + 1)] for j in range(l + 1)] # loop for starting index of range for i in range(l - 1, -1, -1): # initialize value for one # character strings as 1 isPalin[i][i], dp[i][i] = 1, 1 # loop for ending index of range for j in range(i + 1, l): # isPalin[i][j] will be 1 if ith and jth # characters are equal and mid substring # str(i+1..j-1) is also a palindrome isPalin[i][j] = (string[i] == string[j] and (i + 1 > j - 1 or isPalin[i + 1][j - 1])) # dp[i][j] will be addition of number # of palindromes from i to j-1 and i+1 # to j subtracting palindromes from i+1 # to j-1 (as counted twice) plus 1 if # str(i..j) is also a palindrome dp[i][j] = (dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1] + isPalin[i][j]) # Method returns count of palindromic # substring in range (l, r) def countOfPalindromeInRange(dp, l, r): return dp[l][r] # Driver code if __name__ == "__main__": string = "xyaabax" dp = [[0 for i in range(M)] for j in range(M)] constructDP(dp, string) l, r = 3, 5 print(countOfPalindromeInRange(dp, l, r)) # This code is contributed by Rituraj Jain
C#
// C# program to query number of palindromic // substrings of a string in a range using System; class GFG { // Function to construct the dp array static void constructDp(int[, ] dp, string str) { int l = str.Length; // declare 2D array isPalin, isPalin[i][j] // will be 1 if str(i..j) is palindrome int[, ] isPalin = new int[l + 1, l + 1]; // initialize dp and isPalin array by zeros for (int i = 0; i <= l; i++) { for (int j = 0; j <= l; j++) { isPalin[i, j] = dp[i, j] = 0; } } // loop for starting index of range for (int i = l - 1; i >= 0; i--) { // initialize value for one // character strings as 1 isPalin[i, i] = 1; dp[i, i] = 1; // loop for ending index of range for (int j = i + 1; j < l; j++) { /* isPalin[i][j] will be 1 if ith and jth characters are equal and mid substring str(i+1..j-1) is also a palindrome*/ isPalin[i, j] = (str[i] == str[j] && (i + 1 > j - 1 || (isPalin[i + 1, j - 1]) != 0)) ? 1 : 0; /* dp[i][j] will be addition of number of palindromes from i to j-1 and i+1 to j subtracting palindromes from i+1 to j-1 (as counted twice) plus 1 if str(i..j) is also a palindrome */ dp[i, j] = dp[i, j - 1] + dp[i + 1, j] - dp[i + 1, j - 1] + isPalin[i, j]; } } } // method returns count of palindromic // substring in range (l, r) static int countOfPalindromeInRange(int[, ] dp, int l, int r) { return dp[l, r]; } // driver program public static void Main() { int MAX = 50; string str = "xyaabax"; int[, ] dp = new int[MAX, MAX]; constructDp(dp, str); int l = 3; int r = 5; Console.WriteLine(countOfPalindromeInRange(dp, l, r)); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to query number of palindromic // substrings of a string in a range $GLOBALS['M'] = 50; // Utility method to construct the dp array function constructDP($dp, $str) { $l = strlen($str); // declare 2D array isPalin, isPalin[i][j] // will be 1 if str(i..j) is palindrome $isPalin = array(array()); // initialize dp and isPalin array by zeros for ($i = 0; $i <= $l; $i++) { for ($j = 0; $j <= $l; $j++) { $isPalin[$i][$j] = $dp[$i][$j] = 0; } } // loop for starting index of range for ($i = $l - 1; $i >= 0; $i--) { // initialize value for one character // strings as 1 $isPalin[$i][$i] = 1; $dp[$i][$i] = 1; // loop for ending index of range for ($j = $i + 1; $j < $l; $j++) { /* isPalin[i][j] will be 1 if ith and jth characters are equal and mid substring str(i+1..j-1) is also a palindrome */ $isPalin[$i][$j] = ($str[$i] == $str[$j] && ($i + 1 > $j - 1 || $isPalin[$i + 1][$j - 1])); /* dp[i][j] will be addition of number of palindromes from i to j-1 and i+1 to j subtracting palindromes from i+1 to j-1 (as counted twice) plus 1 if str(i..j) is also a palindrome */ $dp[$i][$j] = $dp[$i][$j - 1] + $dp[$i + 1][$j] - $dp[$i + 1][$j - 1] + $isPalin[$i][$j]; } } return $dp ; } // method returns count of palindromic // substring in range (l, r) function countOfPalindromeInRange($dp, $l, $r) { return $dp[$l][$r]; } // Driver code $str = "xyaabax"; $dp = array(array()); for($i = 0; $i < $GLOBALS['M']; $i++ ) for($j = 0; $j < $GLOBALS['M']; $j++) $dp[$i][$j] = 0; $dp = constructDP($dp, $str); $l = 3; $r = 5; echo countOfPalindromeInRange($dp, $l, $r); // This code is contributed by Ryuga ?>
Javascript
<script> // Javascript program to query number of palindromic // substrings of a string in a range // Function to construct the dp array function constructDp(dp, str) { let l = str.length; // declare 2D array isPalin, isPalin[i][j] will // be 1 if str(i..j) is palindrome let isPalin = new Array(l + 1); // initialize dp and isPalin array by zeros for (let i = 0; i <= l; i++) { isPalin[i] = new Array(l + 1); for (let j = 0; j <= l; j++) { isPalin[i][j] = dp[i][j] = 0; } } // loop for starting index of range for (let i = l - 1; i >= 0; i--) { // initialize value for one character strings as 1 isPalin[i][i] = 1; dp[i][i] = 1; // loop for ending index of range for (let j = i + 1; j < l; j++) { /* isPalin[i][j] will be 1 if ith and jth characters are equal and mid substring str(i+1..j-1) is also a palindrome */ isPalin[i][j] = (str[i] == str[j] && (i + 1 > j - 1 || (isPalin[i + 1][j - 1]) != 0)) ? 1 : 0; /* dp[i][j] will be addition of number of palindromes from i to j-1 and i+1 to j subtracting palindromes from i+1 to j-1 (as counted twice) plus 1 if str(i..j) is also a palindrome */ dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1] + isPalin[i][j]; } } } // method returns count of palindromic substring in range (l, r) function countOfPalindromeInRange(dp, l, r) { return dp[l][r]; } let MAX = 50; let str = "xyaabax"; let dp = new Array(MAX); for (let i = 0; i < MAX; i++) { dp[i] = new Array(MAX); for (let j = 0; j < MAX; j++) { dp[i][j] = 0; } } constructDp(dp, str); let l = 3; let r = 5; document.write(countOfPalindromeInRange(dp, l, r)); </script>
4
Complejidad temporal : O(l 2 )
Espacio auxiliar : O(l 2 )
Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA