Dado un árbol de búsqueda binaria (BST) de valores enteros y un rango [bajo, alto], devuelva el recuento de Nodes donde todos los Nodes debajo de ese Node (o subárbol enraizado con ese Node) se encuentran en el rango dado.
Ejemplos:
Input: 10 / \ 5 50 / / \ 1 40 100 Range: [5, 45] Output: 1 There is only 1 node whose subtree is in the given range. The node is 40 Input: 10 / \ 5 50 / / \ 1 40 100 Range: [1, 45] Output: 3 There are three nodes whose subtree is in the given range. The nodes are 1, 5 and 40
Le recomendamos encarecidamente que minimice su navegador y pruebe esto usted mismo primero.
La idea es atravesar el árbol de búsqueda binaria (BST) dado de forma ascendente. Para cada Node, repita para sus subárboles, si los subárboles están dentro del rango y los Nodes también están dentro del rango, luego incremente el conteo y devuelva verdadero (para informar al padre sobre su estado). El recuento se pasa como un puntero para que pueda incrementarse en todas las llamadas a funciones.
A continuación se muestra la implementación de la idea anterior.
C++
// C++ program to count subtrees that lie in a given range #include <bits/stdc++.h> using namespace std; // A BST node struct node { int data; struct node *left, *right; }; // A utility function to check if data of root is // in range from low to high bool inRange(node* root, int low, int high) { return root->data >= low && root->data <= high; } // A recursive function to get count of nodes whose subtree // is in range from low to high. This function returns true // if nodes in subtree rooted under 'root' are in range. bool getCountUtil(node* root, int low, int high, int* count) { // Base case if (root == NULL) return true; // Recur for left and right subtrees bool l = getCountUtil(root->left, low, high, count); bool r = getCountUtil(root->right, low, high, count); // If both left and right subtrees are in range and current node // is also in range, then increment count and return true if (l && r && inRange(root, low, high)) { ++*count; return true; } return false; } // A wrapper over getCountUtil(). This function initializes count as 0 // and calls getCountUtil() int getCount(node* root, int low, int high) { int count = 0; getCountUtil(root, low, high, &count); return count; } // Utility function to create new node node* newNode(int data) { node* temp = new node; temp->data = data; temp->left = temp->right = NULL; return (temp); } // Driver program int main() { // Let us construct the BST shown in the above figure node* root = newNode(10); root->left = newNode(5); root->right = newNode(50); root->left->left = newNode(1); root->right->left = newNode(40); root->right->right = newNode(100); /* Let us constructed BST shown in above example 10 / \ 5 50 / / \ 1 40 100 */ int l = 5; int h = 45; cout << "Count of subtrees in [" << l << ", " << h << "] is " << getCount(root, l, h); return 0; }
Java
// Java program to count subtrees // that lie in a given range class GfG { // A BST node static class node { int data; node left, right; }; // int class static class INT { int a; } // A utility function to check if data of root is // in range from low to high static boolean inRange(node root, int low, int high) { return root.data >= low && root.data <= high; } // A recursive function to get count // of nodes whose subtree is in range // from low to high. This function returns // true if nodes in subtree rooted under // 'root' are in range. static boolean getCountUtil(node root, int low, int high, INT count) { // Base case if (root == null) return true; // Recur for left and right subtrees boolean l = getCountUtil(root.left, low, high, count); boolean r = getCountUtil(root.right, low, high, count); // If both left and right subtrees are // in range and current node is also in // range, then increment count and return true if (l && r && inRange(root, low, high)) { ++count.a; return true; } return false; } // A wrapper over getCountUtil(). // This function initializes count as 0 // and calls getCountUtil() static INT getCount(node root, int low, int high) { INT count = new INT(); count.a = 0; getCountUtil(root, low, high, count); return count; } // Utility function to create new node static node newNode(int data) { node temp = new node(); temp.data = data; temp.left = temp.right = null; return (temp); } // Driver code public static void main(String args[]) { // Let us construct the BST shown in the above figure node root = newNode(10); root.left = newNode(5); root.right = newNode(50); root.left.left = newNode(1); root.right.left = newNode(40); root.right.right = newNode(100); /* Let us construct BST shown in above example 10 / \ 5 50 / / \ 1 40 100 */ int l = 5; int h = 45; System.out.println("Count of subtrees in [" + l + ", " + h + "] is " + getCount(root, l, h).a); } } // This code is contributed by Arnab Kundu
Python3
# Python3 program to count subtrees that # lie in a given range # Utility function to create new node class newNode: # Constructor to create a new node def __init__(self, data): self.data = data self.left = None self.right = None # A utility function to check if data of # root is in range from low to high def inRange(root, low, high): return root.data >= low and root.data <= high # A recursive function to get count of nodes # whose subtree is in range from low to high. # This function returns true if nodes in subtree # rooted under 'root' are in range. def getCountUtil(root, low, high, count): # Base case if root == None: return True # Recur for left and right subtrees l = getCountUtil(root.left, low, high, count) r = getCountUtil(root.right, low, high, count) # If both left and right subtrees are in range # and current node is also in range, then # increment count and return true if l and r and inRange(root, low, high): count[0] += 1 return True return False # A wrapper over getCountUtil(). This function # initializes count as 0 and calls getCountUtil() def getCount(root, low, high): count = [0] getCountUtil(root, low, high, count) return count # Driver Code if __name__ == '__main__': # Let us construct the BST shown in # the above figure root = newNode(10) root.left = newNode(5) root.right = newNode(50) root.left.left = newNode(1) root.right.left = newNode(40) root.right.right = newNode(100) # Let us constructed BST shown in above example # 10 # / \ # 5 50 # / / \ # 1 40 100 l = 5 h = 45 print("Count of subtrees in [", l, ", ", h, "] is ", getCount(root, l, h)) # This code is contributed by PranchalK
C#
// C# program to count subtrees // that lie in a given range using System; class GfG { // A BST node public class node { public int data; public node left, right; }; // int class public class INT { public int a; } // A utility function to check if data of root is // in range from low to high static bool inRange(node root, int low, int high) { return root.data >= low && root.data <= high; } // A recursive function to get count // of nodes whose subtree is in range // from low to high. This function returns // true if nodes in subtree rooted under // 'root' are in range. static bool getCountUtil(node root, int low, int high, INT count) { // Base case if (root == null) return true; // Recur for left and right subtrees bool l = getCountUtil(root.left, low, high, count); bool r = getCountUtil(root.right, low, high, count); // If both left and right subtrees are // in range and current node is also in // range, then increment count and return true if (l && r && inRange(root, low, high)) { ++count.a; return true; } return false; } // A wrapper over getCountUtil(). // This function initializes count as 0 // and calls getCountUtil() static INT getCount(node root, int low, int high) { INT count = new INT(); count.a = 0; getCountUtil(root, low, high, count); return count; } // Utility function to create new node static node newNode(int data) { node temp = new node(); temp.data = data; temp.left = temp.right = null; return (temp); } // Driver code public static void Main(String[] args) { // Let us construct the BST shown in the above figure node root = newNode(10); root.left = newNode(5); root.right = newNode(50); root.left.left = newNode(1); root.right.left = newNode(40); root.right.right = newNode(100); /* Let us construct BST shown in above example 10 / \ 5 50 / / \ 1 40 100 */ int l = 5; int h = 45; Console.WriteLine("Count of subtrees in [" + l + ", " + h + "] is " + getCount(root, l, h).a); } } // This code contributed by Rajput-Ji
Javascript
<script> // JavaScript program to count subtrees // that lie in a given range // A BST node class node { constructor(val) { this.data = val; this.left = null; this.right = null; } } // var class class INT { constructor(){ this.a = 0; } } // A utility function to check if data of root is // in range from low to high function inRange( root , low , high) { return root.data >= low && root.data <= high; } // A recursive function to get count // of nodes whose subtree is in range // from low to high. This function returns // true if nodes in subtree rooted under // 'root' are in range. function getCountUtil( root , low, high, count) { // Base case if (root == null) return true; // Recur for left and right subtrees var l = getCountUtil(root.left, low, high, count); var r = getCountUtil(root.right, low, high, count); // If both left and right subtrees are // in range and current node is also in // range, then increment count and return true if (l && r && inRange(root, low, high)) { ++count.a; return true; } return false; } // A wrapper over getCountUtil(). // This function initializes count as 0 // and calls getCountUtil() function getCount( root , low , high) { var count = new INT(); count.a = 0; getCountUtil(root, low, high, count); return count; } // Utility function to create new node function newNode(data) { var temp = new node(); temp.data = data; temp.left = temp.right = null; return (temp); } // Driver code // Let us construct the BST shown in the above figure var root = newNode(10); root.left = newNode(5); root.right = newNode(50); root.left.left = newNode(1); root.right.left = newNode(40); root.right.right = newNode(100); /* Let us construct BST shown in above example 10 / \ 5 50 / / \ 1 40 100 */ var l = 5; var h = 45; document.write("Count of subtrees in [" + l + ", " + h + "] is " + getCount(root, l, h).a); // This code is contributed by todaysgaurav </script>
Producción:
Count of subtrees in [5, 45] is 1
Espacio auxiliar: O(1)
Este artículo es una contribución de Gaurav Ahirwar . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA