Suma mínima de la diferencia absoluta de pares de dos arrays

Dadas dos arrays a[] y b[] de igual longitud n . La tarea es emparejar cada elemento de la array a con un elemento de la array b , de modo que la suma S de las diferencias absolutas de todos los pares sea mínima.
Supongamos que dos elementos a[ i ] y a[ j ] ( i != j ) de a están emparejados con los elementos b[ p ] y b[ q ] de b respectivamente, 
entonces pno debe ser igual a q .

Ejemplos: 

Input :  a[] = {3, 2, 1}
         b[] = {2, 1, 3}
Output : 0
Explanation :
 1st pairing: |3 - 2| + |2 - 1| + |1 - 3|
         = 1 + 1 + 2 = 4
 2nd pairing: |3 - 2| + |1 - 1| + |2 - 3|
         = 1 + 0 + 1 = 2
 3rd pairing: |2 - 2| + |3 - 1| + |1 - 3|
         = 0 + 2 + 2 = 4
 4th pairing: |1 - 2| + |2 - 1| + |3 - 3|
         = 1 + 1 + 0 = 2
 5th pairing: |2 - 2| + |1 - 1| + |3 - 3|
         = 0 + 0 + 0 = 0
 6th pairing: |1 - 2| + |3 - 1| + |2 - 3|
         = 1 + 2 + 1 = 4
 Therefore, 5th pairing has minimum sum of
 absolute difference.

Input :  n = 4
         a[] = {4, 1, 8, 7}
         b[] = {2, 3, 6, 5}
Output : 6

La solución al problema es un simple enfoque codicioso. Consta de dos pasos. 

  • Paso 1 : ordene ambas arrays en tiempo O (n log n)
  • Paso 2 : encuentre la diferencia absoluta de cada par de elementos correspondientes (elementos en el mismo índice) de ambas arrays y agregue el resultado a la suma S. La complejidad temporal de este paso es O(n) .

Por lo tanto, la complejidad de tiempo total del programa es O(n log n)

C++

// C++ program to find minimum sum of absolute
// differences of two arrays.
#include <bits/stdc++.h>
using namespace std;
 
// Returns minimum possible pairwise absolute
// difference of two arrays.
long long int findMinSum(long long int a[],long long int b[], int n)
{
    // Sort both arrays
    sort(a, a+n);
    sort(b, b+n);
 
    // Find sum of absolute differences
    long long int sum= 0 ;
    for (int i=0; i<n; i++)
        sum = sum + abs(a[i]-b[i]);
 
    return sum;
}
 
// Driver code
int main()
{
    // Both a[] and b[] must be of same size.
    long long int a[] = {4, 1, 8, 7};
    long long int b[] = {2, 3, 6, 5};
    int n = sizeof(a)/sizeof(a[0]);
    printf("%lld\n", findMinSum(a, b, n));
    return 0;
}

C

// C program to find minimum sum of absolute
// differences of two arrays.
#include <stdio.h>
#include<stdlib.h>
 
void merge(int arr[], int l, int m, int r)
{
  int i, j, k;
  int n1 = m - l + 1;
  int n2 = r - m;
 
  /* create temp arrays */
  int L[n1], R[n2];
 
  /* Copy data to temp arrays L[] and R[] */
  for (i = 0; i < n1; i++)
    L[i] = arr[l + i];
  for (j = 0; j < n2; j++)
    R[j] = arr[m + 1 + j];
 
  /* Merge the temp arrays back into arr[l..r]*/
  i = 0; // Initial index of first subarray
  j = 0; // Initial index of second subarray
  k = l; // Initial index of merged subarray
  while (i < n1 && j < n2) {
    if (L[i] <= R[j]) {
      arr[k] = L[i];
      i++;
    }
    else {
      arr[k] = R[j];
      j++;
    }
    k++;
  }
 
  /* Copy the remaining elements of L[], if there
    are any */
  while (i < n1) {
    arr[k] = L[i];
    i++;
    k++;
  }
 
  /* Copy the remaining elements of R[], if there
    are any */
  while (j < n2) {
    arr[k] = R[j];
    j++;
    k++;
  }
}
 
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
  if (l < r) {
    // Same as (l+r)/2, but avoids overflow for
    // large l and h
    int m = l + (r - l) / 2;
 
    // Sort first and second halves
    mergeSort(arr, l, m);
    mergeSort(arr, m + 1, r);
 
    merge(arr, l, m, r);
  }
}
 
// Returns minimum possible pairwise absolute
// difference of two arrays.
int findMinSum(int a[],int b[], int n)
{
  // Sort both arrays
  mergeSort(a,0,n-1);
  mergeSort(b,0,n-1);
 
  // Find sum of absolute differences
  int sum= 0 ;
  for (int i=0; i<n; i++)
    sum = sum + abs(a[i]-b[i]);
 
  return sum;
}
 
// Driver code
int main()
{
 
  // Both a[] and b[] must be of same size.
  int a[] = {4, 1, 8, 7};
  int b[] = {2, 3, 6, 5};
  int n = sizeof(a)/sizeof(a[0]);
  printf("%d\n", findMinSum(a, b, n));
  return 0;
}
 
// This code is contributed by rexomkar.

Java

// Java program to find minimum sum of
// absolute differences of two arrays.
import java.util.Arrays;
 
class MinSum
{
    // Returns minimum possible pairwise
    // absolute difference of two arrays.
    static long findMinSum(long a[], long b[], long n)
    {
        // Sort both arrays
        Arrays.sort(a);
        Arrays.sort(b);
      
        // Find sum of absolute differences
        long sum = 0 ;
        for (int i = 0; i < n; i++)
            sum = sum + Math.abs(a[i] - b[i]);
      
        return sum;
    }
      
    // Driver code
    public static void main(String[] args)
    {
        // Both a[] and b[] must be of same size.
        long a[] = {4, 1, 8, 7};
        long b[] = {2, 3, 6, 5};
        int n = a.length;
        System.out.println(findMinSum(a, b, n));
    }   
}
  
// This code is contributed by Raghav Sharma

Python3

# Python3 program to find minimum sum
# of absolute differences of two arrays.
def findMinSum(a, b, n):
 
    # Sort both arrays
    a.sort()
    b.sort()
 
    # Find sum of absolute differences
    sum = 0
     
    for i in range(n):
        sum = sum + abs(a[i] - b[i])
 
    return sum
 
# Driver program
     
# Both a[] and b[] must be of same size.
a = [4, 1, 8, 7]
b = [2, 3, 6, 5]
n = len(a)
 
print(findMinSum(a, b, n))
 
# This code is contributed by Anant Agarwal.

C#

// C# program to find minimum sum of
// absolute differences of two arrays.
using System;
 
class MinSum {
     
    // Returns minimum possible pairwise
    // absolute difference of two arrays.
    static long findMinSum(long []a, long []b,
                           long n)
    {
         
        // Sort both arrays
        Array.Sort(a);
        Array.Sort(b);
     
        // Find sum of absolute differences
        long sum = 0 ;
        for (int i = 0; i < n; i++)
            sum = sum + Math.Abs(a[i] - b[i]);
     
        return sum;
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        // Both a[] and b[] must be of same size.
        long []a = {4, 1, 8, 7};
        long []b = {2, 3, 6, 5};
        int n = a.Length;
        Console.Write(findMinSum(a, b, n));
    }
}
 
// This code is contributed by parashar...

PHP

<?php
// PHP program to find minimum sum
// of absolute differences of two
// arrays.
 
// Returns minimum possible pairwise
// absolute difference of two arrays.
function findMinSum($a, $b, $n)
{
     
    // Sort both arrays
    sort($a);
    sort($a, $n);
    sort($b);
    sort($b, $n);
 
    // Find sum of absolute
    // differences
    $sum= 0 ;
    for ($i = 0; $i < $n; $i++)
        $sum = $sum + abs($a[$i] -
                          $b[$i]);
 
    return $sum;
}
 
    // Driver Code
    // Both a[] and b[] must
    // be of same size.
    $a = array(4, 1, 8, 7);
    $b = array(2, 3, 6, 5);
    $n = sizeof($a);
    echo(findMinSum($a, $b, $n));
 
// This code is contributed by nitin mittal.
?>

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to return the minimum number
 
// Returns minimum possible pairwise
// absolute difference of two arrays.
    function findMinSum(a, b, n)
    {
        // Sort both arrays
        a.sort();
        b.sort();
      
        // Find sum of absolute differences
        let sum = 0 ;
        for (let i = 0; i < n; i++)
            sum = sum + Math.abs(a[i] - b[i]);
      
        return sum;
    }
     
// Driver Code
 
    // Both a[] and b[] must be of same size.
    let a = [4, 1, 8, 7];
    let b = [2, 3, 6, 5];
    let n = a.length;
    document.write(findMinSum(a, b, n));
 
// This code is contributed by code_hunt.
</script>
Producción

6

Complejidad de tiempo: O(n * logn)
Espacio auxiliar: O(1)

Este artículo es una contribución de Sahil Bajaj . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *