Te dan n pares de números. En cada par, el primer número siempre es más pequeño que el segundo número. Un par (c, d) puede seguir a otro par (a, b) si b < c. La string de pares se puede formar de esta manera. Encuentre la string más larga que se puede formar a partir de un conjunto dado de pares.
Fuente: Amazon Entrevista | Conjunto 2
Por ejemplo, si los pares dados son {{5, 24}, {39, 60}, {15, 28}, {27, 40}, {50, 90} }, entonces la string más larga que se puede formar es de longitud 3, y la string es {{5, 24}, {27, 40}, {50, 90}}
Este problema es una variación del problema estándar de subsecuencia creciente más larga . El siguiente es un proceso simple de dos pasos.
1) Ordenar los pares dados en orden creciente del primer (o más pequeño) elemento. ¿Por qué necesitamos clasificar? Considere el ejemplo {{6, 8}, {3, 4}} para comprender la necesidad de ordenar. Si procedemos al segundo paso sin clasificar, obtenemos el resultado 1. Pero el resultado correcto es 2.
2) Ahora ejecute un proceso LIS modificado en el que comparemos el segundo elemento del LIS ya finalizado con el primer elemento del nuevo LIS que se está construyendo.
El siguiente código es una ligera modificación del método 2 de esta publicación .
C++
// CPP program for above approach #include <bits/stdc++.h> using namespace std; // Structure for a Pair class Pair { public: int a; int b; }; // This function assumes that arr[] // is sorted in increasing order // according the first // (or smaller) values in Pairs. int maxChainLength( Pair arr[], int n) { int i, j, max = 0; int *mcl = new int[sizeof( int ) * n ]; /* Initialize MCL (max chain length) values for all indexes */ for ( i = 0; i < n; i++ ) mcl[i] = 1; /* Compute optimized chain length values in bottom up manner */ for ( i = 1; i < n; i++ ) for ( j = 0; j < i; j++ ) if ( arr[i].a > arr[j].b && mcl[i] < mcl[j] + 1) mcl[i] = mcl[j] + 1; // mcl[i] now stores the maximum // chain length ending with Pair i /* Pick maximum of all MCL values */ for ( i = 0; i < n; i++ ) if ( max < mcl[i] ) max = mcl[i]; /* Free memory to avoid memory leak */ return max; } /* Driver code */ int main() { Pair arr[] = { {5, 24}, {15, 25}, {27, 40}, {50, 60} }; int n = sizeof(arr)/sizeof(arr[0]); cout << "Length of maximum size chain is " << maxChainLength( arr, n ); return 0; } // This code is contributed by rathbhupendra
C
#include<stdio.h> #include<stdlib.h> // Structure for a pair struct pair { int a; int b; }; // This function assumes that // arr[] is sorted in increasing order // according the first // (or smaller) values in pairs. int maxChainLength( struct pair arr[], int n) { int i, j, max = 0; int *mcl = (int*) malloc ( sizeof( int ) * n ); /* Initialize MCL (max chain length) values for all indexes */ for ( i = 0; i < n; i++ ) mcl[i] = 1; /* Compute optimized chain length values in bottom up manner */ for ( i = 1; i < n; i++ ) for ( j = 0; j < i; j++ ) if ( arr[i].a > arr[j].b && mcl[i] < mcl[j] + 1) mcl[i] = mcl[j] + 1; // mcl[i] now stores the maximum // chain length ending with pair i /* Pick maximum of all MCL values */ for ( i = 0; i < n; i++ ) if ( max < mcl[i] ) max = mcl[i]; /* Free memory to avoid memory leak */ free( mcl ); return max; } /* Driver program to test above function */ int main() { struct pair arr[] = { {5, 24}, {15, 25}, {27, 40}, {50, 60} }; int n = sizeof(arr)/sizeof(arr[0]); printf("Length of maximum size chain is %d\n", maxChainLength( arr, n )); return 0; }
Java
// Java program for above approach class Pair { int a; int b; public Pair(int a, int b) { this.a = a; this.b = b; } // This function assumes that // arr[] is sorted in increasing order // according the first (or smaller) // values in pairs. static int maxChainLength(Pair arr[], int n) { int i, j, max = 0; int mcl[] = new int[n]; /* Initialize MCL (max chain length) values for all indexes */ for ( i = 0; i < n; i++ ) mcl[i] = 1; /* Compute optimized chain length values in bottom up manner */ for ( i = 1; i < n; i++ ) for ( j = 0; j < i; j++ ) if ( arr[i].a > arr[j].b && mcl[i] < mcl[j] + 1) mcl[i] = mcl[j] + 1; // mcl[i] now stores the maximum // chain length ending with pair i /* Pick maximum of all MCL values */ for ( i = 0; i < n; i++ ) if ( max < mcl[i] ) max = mcl[i]; return max; } /* Driver program to test above function */ public static void main(String[] args) { Pair arr[] = new Pair[] { new Pair(5,24), new Pair(15, 25), new Pair (27, 40), new Pair(50, 60)}; System.out.println("Length of maximum size chain is " + maxChainLength(arr, arr.length)); } }
Python3
# Python program for above approach class Pair(object): def __init__(self, a, b): self.a = a self.b = b # This function assumes # that arr[] is sorted in increasing # order according the # first (or smaller) values in pairs. def maxChainLength(arr, n): max = 0 # Initialize MCL(max chain # length) values for all indices mcl = [1 for i in range(n)] # Compute optimized chain # length values in bottom up manner for i in range(1, n): for j in range(0, i): if (arr[i].a > arr[j].b and mcl[i] < mcl[j] + 1): mcl[i] = mcl[j] + 1 # mcl[i] now stores the maximum # chain length ending with pair i # Pick maximum of all MCL values for i in range(n): if (max < mcl[i]): max = mcl[i] return max # Driver program to test above function arr = [Pair(5, 24), Pair(15, 25), Pair(27, 40), Pair(50, 60)] print('Length of maximum size chain is', maxChainLength(arr, len(arr))) # This code is contributed by Soumen Ghosh
C#
// Dynamic C# program to find // Maximum Length Chain of Pairs using System; class Pair { int a; int b; public Pair(int a, int b) { this.a = a; this.b = b; } // This function assumes that arr[] // is sorted in increasing order // according the first (or smaller) // values in pairs. static int maxChainLength(Pair []arr, int n) { int i, j, max = 0; int []mcl = new int[n]; // Initialize MCL (max chain length) // values for all indexes for(i = 0; i < n; i++ ) mcl[i] = 1; // Compute optimized chain length // values in bottom up manner for(i = 1; i < n; i++) for (j = 0; j < i; j++) if(arr[i].a > arr[j].b && mcl[i] < mcl[j] + 1) // mcl[i] now stores the maximum // chain length ending with pair i mcl[i] = mcl[j] + 1; // Pick maximum of all MCL values for ( i = 0; i < n; i++ ) if (max < mcl[i] ) max = mcl[i]; return max; } // Driver Code public static void Main() { Pair []arr = new Pair[] {new Pair(5,24), new Pair(15, 25), new Pair (27, 40), new Pair(50, 60)}; Console.Write("Length of maximum size chain is " + maxChainLength(arr, arr.Length)); } } // This code is contributed by nitin mittal.
Javascript
<script> // Javascript program for above approach class Pair { constructor(a,b) { this.a=a; this.b=b; } } // This function assumes that // arr[] is sorted in increasing order // according the first (or smaller) // values in pairs. function maxChainLength(arr,n) { let i, j, max = 0; let mcl = new Array(n); /* Initialize MCL (max chain length) values for all indexes */ for ( i = 0; i < n; i++ ) mcl[i] = 1; /* Compute optimized chain length values in bottom up manner */ for ( i = 1; i < n; i++ ) for ( j = 0; j < i; j++ ) if ( arr[i].a > arr[j].b && mcl[i] < mcl[j] + 1) mcl[i] = mcl[j] + 1; // mcl[i] now stores the maximum // chain length ending with pair i /* Pick maximum of all MCL values */ for ( i = 0; i < n; i++ ) if ( max < mcl[i] ) max = mcl[i]; return max; } /* Driver program to test above function */ let arr=[ new Pair(5,24), new Pair(15, 25), new Pair (27, 40), new Pair(50, 60)]; document.write("Length of maximum size chain is " + maxChainLength(arr, arr.length)); // This code is contributed by avanitrachhadiya2155 </script>
C++14
// CPP program for above approach #include <bits/stdc++.h> using namespace std; // Structure val struct val { int first; int second; }; map<pair<int, int>, int> m; // Memoisation function int findMaxChainLen(struct val p[], int n, int prev, int pos) { // Check if pair { pos, prev } exists // in m if (m.find({ pos, prev }) != m.end()) { return m[{ pos, prev }]; } // Check if pos is >=n if (pos >= n) return 0; // Check if p[pos].first is // less than prev if (p[pos].first <= prev) { return findMaxChainLen(p, n, prev, pos + 1); } else { int ans = max(findMaxChainLen(p, n, p[pos].second, 0) + 1, findMaxChainLen(p, n, prev, pos + 1)); m[{ pos, prev }] = ans; return ans; } } // Function to calculate maximum // chain length int maxChainLen(struct val p[], int n) { m.clear(); // Call memoisation function int ans = findMaxChainLen(p, n, 0, 0); return ans; } // Driver Code int main() { int n = 5; val p[n]; p[0].first = 5; p[0].second = 24; p[1].first = 39; p[1].second = 60; p[2].first = 15; p[2].second = 28; p[3].first = 27; p[3].second = 40; p[4].first = 50; p[4].second = 90; // Function Call cout << maxChainLen(p, n) << endl; return 0; }
Java
// Java program for above approach import java.util.*; class GFG{ // Structure val static class val { int first; int second; }; static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; pair other = (pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } static Map<pair, Integer> m = new HashMap<>(); // Memoisation function static int findMaxChainLen(val p[], int n, int prev, int pos) { // Check if pair { pos, prev } exists // in m if (m.containsKey(new pair(pos, prev))) { return m.get(new pair(pos, prev)); } // Check if pos is >=n if (pos >= n) return 0; // Check if p[pos].first is // less than prev if (p[pos].first <= prev) { return findMaxChainLen(p, n, prev, pos + 1); } else { int ans = Math.max(findMaxChainLen( p, n, p[pos].second, 0) + 1, findMaxChainLen( p, n, prev, pos + 1)); m.put(new pair(pos, prev), ans); return ans; } } // Function to calculate maximum // chain length static int maxChainLen(val p[], int n) { m.clear(); // Call memoisation function int ans = findMaxChainLen(p, n, 0, 0); return ans; } // Driver Code public static void main(String[] args) { int n = 5; val []p = new val[n]; for(int i = 0; i < n; i++) p[i] = new val(); p[0].first = 5; p[0].second = 24; p[1].first = 39; p[1].second = 60; p[2].first = 15; p[2].second = 28; p[3].first = 27; p[3].second = 40; p[4].first = 50; p[4].second = 90; // Function Call System.out.print(maxChainLen(p, n) + "\n"); } } // This code is contributed by 29AjayKumar
Python3
# Python program for above approach # Structure val class val: def __init__(self,first,second): self.first = first self.second = second # Memoisation function def findMaxChainLen(p, n, prev, pos): global m # Check if pair { pos, prev } exists # in m if (val(pos, prev) in m): return m[val(pos, prev)] # Check if pos is >=n if (pos >= n): return 0 # Check if p[pos].first is # less than prev if (p[pos].first <= prev): return findMaxChainLen(p, n, prev, pos + 1) else: ans = max(findMaxChainLen(p, n, p[pos].second, 0) + 1, findMaxChainLen(p, n, prev, pos + 1)) m[val(pos, prev)] = ans return ans # Function to calculate maximum # chain length def maxChainLen(p,n): global m m.clear() # Call memoisation function ans = findMaxChainLen(p, n, 0, 0) return ans # Driver Code n = 5 p = [0]*n p[0] = val(5,24) p[1] = val(39,60) p[2] = val(15,28) p[3] = val(27,40) p[4] = val(50,90) m = {} # Function Call print(maxChainLen(p, n)) # This code is contributed by shinjanpatra
Javascript
<script> // JavaScript program for above approach // Structure val class val { constructor(first,second){ this.first = first; this.second = second; } }; let m = new Map(); // Memoisation function function findMaxChainLen(p,n,prev,pos) { // Check if pair { pos, prev } exists // in m if (m.has(new val(pos, prev))) return m.get(new val(pos, prev)); // Check if pos is >=n if (pos >= n) return 0; // Check if p[pos].first is // less than prev if (p[pos].first <= prev) { return findMaxChainLen(p, n, prev, pos + 1); } else { let ans = Math.max(findMaxChainLen(p, n, p[pos].second, 0) + 1, findMaxChainLen(p, n, prev, pos + 1)); m.set(new val(pos, prev),ans); return ans; } } // Function to calculate maximum // chain length function maxChainLen(p,n) { m.clear(); // Call memoisation function let ans = findMaxChainLen(p, n, 0, 0); return ans; } // Driver Code let n = 5; let p = new Array(n); p[0] = new val(5,24); p[1] = new val(39,60); p[2] = new val(15,28); p[3] = new val(27,40); p[4] = new val(50,90); // Function Call document.write(maxChainLen(p, n),"</br>"); // code is contributed by shinjanpatra </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA