En combinatoria, el Número Euleriano A(n, m), es el número de permutaciones de los números 1 a n en las que exactamente m elementos son mayores que el elemento anterior.
Por ejemplo, hay 4 permutaciones del número 1 al 3 en las que exactamente 1 elemento es mayor que los elementos anteriores.
Ejemplos:
Input : n = 3, m = 1 Output : 4 Please see above diagram (There are 4 permutations where 1 no. is greater. Input : n = 4, m = 1 Output : 11
Los Números Eulerianos son los coeficientes de los polinomios Eulerianos que se describen a continuación.
Los polinomios eulerianos están definidos por la función generadora exponencial
Los polinomios eulerianos se pueden calcular mediante la recurrencia
Una fórmula explícita para A(n, m) es
Podemos calcular A(n, m) por relación de recurrencia:
Ejemplo:
suponga que n = 3 y m = 1.
Por lo tanto,
A(3, 1)
= (3 – 1) * A(2, 0) + (1 + 1) * A(2, 1)
= 2 * A (2, 0) + 2 * A(2, 1)
= 2 * 1 + 2 * ( (2 – 1) * A(1, 0) + (1 + 1) * A(1, 1))
= 2 + 2 * (1 * 1 + 2 * ((1 – 1) * A(0, 0) + (1 + 1) * A(0, 1))
= 2 + 2 * (1 + 2 * (0 * 1 + 2 * 0)
= 2 + 2 * (1 + 2 * 0)
= 2 + 2 * 1
= 2 + 2
= 4
Podemos verificar esto con el ejemplo que se muestra arriba.
A continuación se muestra la implementación de encontrar A (n, m):
C++
// CPP Program to find Eulerian number A(n, m) #include <bits/stdc++.h> using namespace std; // Return euleriannumber A(n, m) int eulerian(int n, int m) { if (m >= n || n == 0) return 0; if (m == 0) return 1; return (n - m) * eulerian(n - 1, m - 1) + (m + 1) * eulerian(n - 1, m); } // Driven Program int main() { int n = 3, m = 1; cout << eulerian(n, m) << endl; return 0; }
Java
// Java program to find Eulerian number A(n, m) import java.util.*; class Eulerian { // Return eulerian number A(n, m) public static int eulerian(int n, int m) { if (m >= n || n == 0) return 0; if (m == 0) return 1; return (n - m) * eulerian(n - 1, m - 1) + (m + 1) * eulerian(n - 1, m); } // driver code public static void main(String[] args) { int n = 3, m = 1; System.out.print( eulerian(n, m) ); } } // This code is contributed by rishabh_jain
Python3
# Python3 Program to find Eulerian number A(n, m) # Return euleriannumber A(n, m) def eulerian(n, m): if (m >= n or n == 0): return 0; if (m == 0): return 1; return ((n - m) * eulerian(n - 1, m - 1) + (m + 1) * eulerian(n - 1, m)) # Driver code n = 3 m = 1 print( eulerian(n, m) ) # This code is contributed by rishabh_jain
C#
// C# program to find Eulerian number A(n, m) using System; class Eulerian { // Return eulerian number A(n, m) public static int eulerian(int n, int m) { if (m >= n || n == 0) return 0; if (m == 0) return 1; return (n - m) * eulerian(n - 1, m - 1) + (m + 1) * eulerian(n - 1, m); } // driver code public static void Main() { int n = 3, m = 1; Console.WriteLine(eulerian(n, m)); } } // This code is contributed by vt_m
PHP
<?php // PHP Program to find // Eulerian number A(n, m) // Return euleriannumber A(n, m) function eulerian($n, $m) { if ($m >= $n || $n == 0) return 0; if ($m == 0) return 1; return ($n - $m) * eulerian($n - 1, $m - 1) + ($m + 1) * eulerian($n - 1, $m); } // Driven Code $n = 3; $m = 1; echo eulerian($n, $m); // This code is contributed by anuj_67. ?>
Javascript
<script> // JavaScript Program to find Eulerian number A(n, m) // Return eulerian number A(n, m) function eulerian(n, m) { if (m >= n || n == 0) return 0; if (m == 0) return 1; return (n - m) * eulerian(n - 1, m - 1) + (m + 1) * eulerian(n - 1, m); } // Driver code let n = 3, m = 1; document.write( eulerian(n, m) ); </script>
Producción :
4
A continuación se muestra la implementación de encontrar A (n, m) usando Programación Dinámica:
C++
// CPP Program to find Eulerian number A(n, m) #include <bits/stdc++.h> using namespace std; // Return euleriannumber A(n, m) int eulerian(int n, int m) { int dp[n + 1][m + 1]; memset(dp, 0, sizeof(dp)); // For each row from 1 to n for (int i = 1; i <= n; i++) { // For each column from 0 to m for (int j = 0; j <= m; j++) { // If i is greater than j if (i > j) { // If j is 0, then make that // state as 1. if (j == 0) dp[i][j] = 1; // basic recurrence relation. else dp[i][j] = ((i - j) * dp[i - 1][j - 1]) + ((j + 1) * dp[i - 1][j]); } } } return dp[n][m]; } // Driven Program int main() { int n = 3, m = 1; cout << eulerian(n, m) << endl; return 0; }
Java
// Java program to find Eulerian number A(n, m) import java.util.*; class Eulerian { // Return euleriannumber A(n, m) public static int eulerian(int n, int m) { int[][] dp = new int[n+1][m+1]; // For each row from 1 to n for (int i = 1; i <= n; i++) { // For each column from 0 to m for (int j = 0; j <= m; j++) { // If i is greater than j if (i > j) { // If j is 0, then make // that state as 1. if (j == 0) dp[i][j] = 1; // basic recurrence relation. else dp[i][j] = ((i - j) * dp[i - 1][j - 1]) + ((j + 1) * dp[i - 1][j]); } } } return dp[n][m]; } // driver code public static void main(String[] args) { int n = 3, m = 1; System.out.print( eulerian(n, m) ); } } // This code is contributed by rishabh_jain
Python3
# Python3 Program to find Eulerian # number A(n, m) # Return euleriannumber A(n, m) def eulerian(n, m): dp = [[0 for x in range(m+1)] for y in range(n+1)] # For each row from 1 to n for i in range(1, n+1): # For each column from 0 to m for j in range(0, m+1): # If i is greater than j if (i > j): # If j is 0, then make that # state as 1. if (j == 0): dp[i][j] = 1 # basic recurrence relation. else : dp[i][j] = (((i - j) * dp[i - 1][j - 1]) + ((j + 1) * dp[i - 1][j])) return dp[n][m] # Driven Program n = 3 m = 1 print(eulerian(n, m)) # This code is contributed by Prasad Kshirsagar
C#
// C# program to find Eulerian number A(n, m) using System; class Eulerian { // Return euleriannumber A(n, m) public static int eulerian(int n, int m) { int[, ] dp = new int[n + 1, m + 1]; // For each row from 1 to n for (int i = 1; i <= n; i++) { // For each column from 0 to m for (int j = 0; j <= m; j++) { // If i is greater than j if (i > j) { // If j is 0, then make // that state as 1. if (j == 0) dp[i, j] = 1; // basic recurrence relation. else dp[i, j] = ((i - j) * dp[i - 1, j - 1]) + ((j + 1) * dp[i - 1, j]); } } } return dp[n, m]; } // driver code public static void Main() { int n = 3, m = 1; Console.WriteLine(eulerian(n, m)); } } // This code is contributed by vt_m
PHP
<?php // PHP Program to find Eulerian // number A(n, m) // Return euleriannumber A(n, m) function eulerian($n, $m) { $dp = array(array()); for ($i = 0; $i < $n + 1; $i++) for($j = 0; $j < $m + 1; $j++) $dp[$i][$j] = 0 ; // For each row from 1 to n for ($i = 1; $i <= $n; $i++) { // For each column from 0 to m for ($j = 0; $j <= $m; $j++) { // If i is greater than j if ($i > $j) { // If j is 0, then make that // state as 1. if ($j == 0) $dp[$i][$j] = 1; // basic recurrence relation. else $dp[$i][$j] = (($i - $j) * $dp[$i - 1][$j - 1]) + (($j + 1) * $dp[$i - 1][$j]); } } } return $dp[$n][$m]; } // Driver Code $n = 3 ; $m = 1; echo eulerian($n, $m) ; // This code is contributed by Ryuga ?>
Javascript
<script> // Javascript Program to find // Eulerian number A(n, m) // Return euleriannumber A(n, m) function eulerian(n, m) { var dp = Array.from(Array(n+1), ()=> Array(m+1).fill(0)); // For each row from 1 to n for (var i = 1; i <= n; i++) { // For each column from 0 to m for (var j = 0; j <= m; j++) { // If i is greater than j if (i > j) { // If j is 0, then make that // state as 1. if (j == 0) dp[i][j] = 1; // basic recurrence relation. else dp[i][j] = ((i - j) * dp[i - 1][j - 1]) + ((j + 1) * dp[i - 1][j]); } } } return dp[n][m]; } // Driven Program var n = 3, m = 1; document.write( eulerian(n, m) ); </script>
Producción :
4