Consultas para actualizar un índice dado y encontrar gcd en el rango

Dada una array arr[] de N enteros y consultas Q . Las consultas son de dos tipos: 

  1. Actualice un índice dado por X .
  2. Encuentre el gcd de los elementos en el rango de índice [L, R] .

Ejemplos:  

Entrada: arr[] = {1, 3, 6, 9, 9, 11} 
Consulta de tipo 2: L = 1, R = 3  Consulta de
tipo 1: ind = 1, X = 10  Consulta de
tipo 2: L = 1, R = 3 
Salida: 

Entrada: arr[] = {1, 2, 4, 9, 3} 
Consulta de tipo 2: L = 1, R = 2  Consulta de
tipo 1: ind = 2, X = 7  Consulta de
tipo 2: L = 1, R = 2 
Consulta tipo 2: L = 3, R = 4 
Salida: 


3  

Enfoque: El siguiente problema se puede resolver usando el Árbol de Segmentos

Se puede usar un árbol de segmentos para realizar preprocesamiento y consultas en un tiempo moderado. Con el árbol de segmentos, el tiempo de preprocesamiento es O(n) y el tiempo para la consulta GCD es O(Logn). El espacio adicional requerido es O(n) para almacenar el árbol de segmentos.

Representación de árboles de segmentos 

  • Los Nodes hoja son los elementos de la array de entrada.
  • Cada Node interno representa el GCD de todas las hojas debajo de él.

La representación de array del árbol se utiliza para representar árboles de segmentos, es decir, para cada Node en el índice i 

  • El hijo izquierdo está en el índice 2*i+1
  • Hijo derecho en 2*i+2 y el padre está en el piso ((i-1)/2).

Construcción del árbol de segmentos a partir de la array dada 

  • Comience con un segmento arr[0 . . . n-1] y seguir dividiendo en dos mitades. Cada vez que dividimos el segmento actual en dos mitades (si aún no se ha convertido en un segmento de longitud 1), llamamos al mismo procedimiento en ambas mitades y, para cada segmento, almacenamos el valor GCD en un Node de árbol de segmento.
  • Todos los niveles del árbol de segmentos construido se llenarán por completo excepto el último nivel. Además, el árbol será un árbol binario completo (cada Node tiene 0 o dos hijos) porque siempre dividimos los segmentos en dos mitades en cada nivel.
  • Dado que el árbol construido siempre es un árbol binario completo con n hojas, habrá n-1 Nodes internos. Entonces, el número total de Nodes será 2*n – 1.
  • Al igual que la construcción de árboles y las operaciones de consulta, la actualización también se puede realizar de forma recursiva. 
  • Nos dan un índice que necesita ser actualizado. Sea diff el valor a sumar. Comenzamos desde la raíz del árbol de segmentos y agregamos diferencias a todos los Nodes que han dado un índice en su rango. Si un Node no tiene un índice determinado en su rango, no hacemos ningún cambio en ese Node.

 

 

 

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// A utility function to get the
// middle index from corner indexes
int getMid(int s, int e)
{
    return (s + (e - s) / 2);
}
 
// A recursive function to get the gcd of values in given range
// of the array. The following are parameters for this function
 
// st --> Pointer to segment tree
// si --> Index of current node in the segment tree. Initially
// 0 is passed as root is always at index 0
// ss & se --> Starting and ending indexes of the segment represented
// by current node, i.e., st[si]
// qs & qe --> Starting and ending indexes of query range
int getGcdUtil(int* st, int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part of given range
    // then return the gcd of the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 0;
 
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return __gcd(getGcdUtil(st, ss, mid, qs, qe, 2 * si + 1),
                 getGcdUtil(st, mid + 1, se, qs, qe, 2 * si + 2));
}
 
// A recursive function to update the nodes which have the given
// index in their range. The following are parameters
// st, si, ss and se are same as getSumUtil()
// i --> index of the element to be updated. This index is
// in the input array.
// diff --> Value to be added to all nodes which have i in range
void updateValueUtil(int* st, int ss, int se, int i, int new_val, int si)
{
    // Base Case: If the input index lies outside the range of
    // this segment
    if (i < ss || i > se)
        return;
 
    // If only single element is left in the range
    if(ss == se)
    {
        st[si] = new_val;
        return;
    }
     
    int mid = getMid(ss, se);
    updateValueUtil(st, ss, mid, i, new_val, 2 * si + 1);
    updateValueUtil(st, mid + 1, se, i, new_val, 2 * si + 2);
     
    st[si] = __gcd(st[2*si + 1], st[2*si + 2]);
}
 
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int* st, int n, int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n - 1) {
        cout << "Invalid Input";
        return;
    }
 
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i, new_val, 0);
}
 
// Function to return the sum of elements in range
// from index qs (query start) to qe (query end)
// It mainly uses getSumUtil()
int getGcd(int* st, int n, int qs, int qe)
{
 
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe) {
        cout << "Invalid Input";
        return -1;
    }
 
    return getGcdUtil(st, 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructGcdUtil(int arr[], int ss, int se, int* st, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se) {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one element then recur for left and
    // right subtrees and store the sum of values in this node
    int mid = getMid(ss, se);
    st[si] = __gcd(constructGcdUtil(arr, ss, mid, st, si * 2 + 1),
                   constructGcdUtil(arr, mid + 1, se, st, si * 2 + 2));
    return st[si];
}
 
// Function to construct segment tree from given array. This function
// allocates memory for segment tree and calls constructSTUtil() to
// fill the allocated memory
int* constructGcd(int arr[], int n)
{
    // Allocate memory for the segment tree
 
    // Height of segment tree
    int x = (int)(ceil(log2(n)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int)pow(2, x) - 1;
 
    // Allocate memory
    int* st = new int[max_size];
 
    // Fill the allocated memory st
    constructGcdUtil(arr, 0, n - 1, st, 0);
 
    // Return the constructed segment tree
    return st;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 3, 6, 9, 9, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Build segment tree from given array
    int* st = constructGcd(arr, n);
 
    // Print GCD of values in array from index 1 to 3
    cout << getGcd(st, n, 1, 3) << endl;
 
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, st, n, 1, 10);
 
    // Find GCD after the value is updated
    cout << getGcd(st, n, 1, 3) << endl;
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
     
// segment tree
static int st[];
 
// Recursive function to return gcd of a and b
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// A utility function to get the
// middle index from corner indexes
static int getMid(int s, int e)
{
    return (s + (e - s) / 2);
}
 
// A recursive function to get the gcd of values in given range
// of the array. The following are parameters for this function
 
// st --> Pointer to segment tree
// si --> Index of current node in the segment tree. Initially
// 0 is passed as root is always at index 0
// ss & se --> Starting and ending indexes of the segment represented
// by current node, i.e., st[si]
// qs & qe --> Starting and ending indexes of query range
static int getGcdUtil( int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part of given range
    // then return the gcd of the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 0;
 
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return __gcd(getGcdUtil( ss, mid, qs, qe, 2 * si + 1),
                getGcdUtil( mid + 1, se, qs, qe, 2 * si + 2));
}
 
// A recursive function to update the nodes which have the given
// index in their range. The following are parameters
// si, ss and se are same as getSumUtil()
// i --> index of the element to be updated. This index is
// in the input array.
// diff --> Value to be added to all nodes which have i in range
static void updateValueUtil( int ss, int se, int i, int new_val, int si)
{
    // Base Case: If the input index lies outside the range of
    // this segment
    if (i < ss || i > se)
        return;
 
    // If only single element is left in the range
    if(ss == se)
    {
        st[si] = new_val;
        return;
    }
     
    int mid = getMid(ss, se);
    updateValueUtil(ss, mid, i, new_val, 2 * si + 1);
    updateValueUtil(mid + 1, se, i, new_val, 2 * si + 2);
     
    st[si] = __gcd(st[2*si + 1], st[2*si + 2]);
}
 
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
static void updateValue(int arr[], int n, int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        System.out.println("Invalid Input");
        return;
    }
   
    // Update the values of nodes in segment tree
    updateValueUtil( 0, n - 1, i, new_val, 0);
}
 
// Function to return the sum of elements in range
// from index qs (query start) to qe (query end)
// It mainly uses getSumUtil()
static int getGcd( int n, int qs, int qe)
{
 
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe)
    {
        System.out.println( "Invalid Input");
        return -1;
    }
 
    return getGcdUtil( 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
static int constructGcdUtil(int arr[], int ss, int se, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one element then recur for left and
    // right subtrees and store the sum of values in this node
    int mid = getMid(ss, se);
    st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1),
                constructGcdUtil(arr, mid + 1, se, si * 2 + 2));
    return st[si];
}
 
// Function to construct segment tree from given array. This function
// allocates memory for segment tree and calls constructSTUtil() to
// fill the allocated memory
static void constructGcd(int arr[], int n)
{
    // Allocate memory for the segment tree
 
    // Height of segment tree
    int x = (int)(Math.ceil(Math.log(n)/Math.log(2)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int)Math.pow(2, x) - 1;
 
    // Allocate memory
    st = new int[max_size];
 
    // Fill the allocated memory st
    constructGcdUtil(arr, 0, n - 1, 0);
 
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 1, 3, 6, 9, 9, 11 };
    int n = arr.length;
 
    // Build segment tree from given array
    constructGcd(arr, n);
 
    // Print GCD of values in array from index 1 to 3
    System.out.println( getGcd( n, 1, 3) );
 
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, n, 1, 10);
 
    // Find GCD after the value is updated
    System.out.println( getGcd( n, 1, 3) );
}
}
 
// This code is constructed by Arnab Kundu

Python3

# Python 3 implementation of the approach
 
from math import gcd,ceil,log2,pow
 
# A utility function to get the
# middle index from corner indexes
def getMid(s, e):
    return (s + int((e - s) / 2))
 
# A recursive function to get the gcd of values in given range
# of the array. The following are parameters for this function
 
# st --> Pointer to segment tree
# si --> Index of current node in the segment tree. Initially
# 0 is passed as root is always at index 0
# ss & se --> Starting and ending indexes of the segment represented
# by current node, i.e., st[si]
# qs & qe --> Starting and ending indexes of query range
def getGcdUtil(st,ss,se,qs,qe,si):
     
    # If segment of this node is a part of given range
    # then return the gcd of the segment
    if (qs <= ss and qe >= se):
        return st[si]
 
    # If segment of this node is outside the given range
    if (se < qs or ss > qe):
        return 0
 
    # If a part of this segment overlaps with the given range
    mid = getMid(ss, se)
    return gcd(getGcdUtil(st, ss, mid, qs, qe, 2 * si + 1),
            getGcdUtil(st, mid + 1, se, qs, qe, 2 * si + 2))
 
# A recursive function to update the nodes which have the given
# index in their range. The following are parameters
# st, si, ss and se are same as getSumUtil()
# i --> index of the element to be updated. This index is
# in the input array.
# diff --> Value to be added to all nodes which have i in range
def updateValueUtil(st,ss,se,i,new_val,si):
     
    # Base Case: If the input index lies outside the range of
    # this segment
    if (i < ss or i > se):
        return
     
    if(ss == se):
        st[si] = new_val
        return
 
    # If the input index is in range of this node, then update
    # the value of the node and its children
     
    mid = getMid(ss, se)
    updateValueUtil(st, ss, mid, i, new_val, 2 * si + 1)
    updateValueUtil(st, mid + 1, se, i, new_val, 2 * si + 2)
     
    st[si] = gcd(st[2*si + 1], st[2*si + 2])
 
# The function to update a value in input array and segment tree.
# It uses updateValueUtil() to update the value in segment tree
def updateValue(arr, st, n, i, new_val):
     
    # Check for erroneous input index
    if (i < 0 or i > n - 1):
        print("Invalid Input")
        return
 
    # Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i, new_val, 0)
 
# Function to return the sum of elements in range
# from index qs (query start) to qe (query end)
# It mainly uses getSumUtil()
def getGcd(st,n,qs,qe):
     
    # Check for erroneous input values
    if (qs < 0 or qe > n - 1 or qs > qe):
        cout << "Invalid Input"
        return -1
 
    return getGcdUtil(st, 0, n - 1, qs, qe, 0)
 
# A recursive function that constructs Segment Tree for array[ss..se].
# si is index of current node in segment tree st
def constructGcdUtil(arr, ss,se, st, si):
     
    # If there is one element in array, store it in current node of
    # segment tree and return
    if (ss == se):
        st[si] = arr[ss]
        return arr[ss]
 
    # If there are more than one element then recur for left and
    # right subtrees and store the sum of values in this node
    mid = getMid(ss, se)
    st[si] = gcd(constructGcdUtil(arr, ss, mid, st, si * 2 + 1),
                constructGcdUtil(arr, mid + 1, se, st, si * 2 + 2))
    return st[si]
 
# Function to construct segment tree from given array. This function
# allocates memory for segment tree and calls constructSTUtil() to
# fill the allocated memory
def constructGcd(arr, n):
     
    # Allocate memory for the segment tree
 
    # Height of segment tree
    x = int(ceil(log2(n)))
 
    # Maximum size of segment tree
    max_size = 2 * int(pow(2, x) - 1)
 
    # Allocate memory
    st = [0 for i in range(max_size)]
 
    # Fill the allocated memory st
    constructGcdUtil(arr, 0, n - 1, st, 0)
 
    # Return the constructed segment tree
    return st
 
# Driver code
if __name__ == '__main__':
    arr = [1, 3, 6, 9, 9, 11]
    n = len(arr)
 
    # Build segment tree from given array
    st = constructGcd(arr, n)
 
    # Print GCD of values in array from index 1 to 3
    print(getGcd(st, n, 1, 3))
 
    # Update: set arr[1] = 10 and update corresponding
    # segment tree nodes
    updateValue(arr, st, n, 1, 10)
 
    # Find GCD after the value is updated
    print(getGcd(st, n, 1, 3))
 
# This code is contributed by
# SURENDRA_GANGWAR

C#

// C# implementation of the approach.
using System;
     
class GFG
{
     
// segment tree
static int []st;
 
// Recursive function to return gcd of a and b
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// A utility function to get the
// middle index from corner indexes
static int getMid(int s, int e)
{
    return (s + (e - s) / 2);
}
 
// A recursive function to get the gcd of values in given range
// of the array. The following are parameters for this function
 
// st --> Pointer to segment tree
// si --> Index of current node in the segment tree. Initially
// 0 is passed as root is always at index 0
// ss & se --> Starting and ending indexes of the segment represented
// by current node, i.e., st[si]
// qs & qe --> Starting and ending indexes of query range
static int getGcdUtil( int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part of given range
    // then return the gcd of the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 0;
 
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return __gcd(getGcdUtil( ss, mid, qs, qe, 2 * si + 1),
                getGcdUtil( mid + 1, se, qs, qe, 2 * si + 2));
}
 
// A recursive function to update the nodes which have the given
// index in their range. The following are parameters
// si, ss and se are same as getSumUtil()
// i --> index of the element to be updated. This index is
// in the input array.
// diff --> Value to be added to all nodes which have i in range
static void updateValueUtil( int ss, int se, int i, int new_val, int si)
{
    // Base Case: If the input index lies outside the range of
    // this segment
    if (i < ss || i > se)
        return;
 
    // If only single element is left in the range
    if(ss == se)
    {
        st[si] = new_val;
        return;
    }
     
    int mid = getMid(ss, se);
    updateValueUtil(ss, mid, i, new_val, 2 * si + 1);
    updateValueUtil(mid + 1, se, i, new_val, 2 * si + 2);
     
    st[si] = __gcd(st[2*si + 1], st[2*si + 2]);
}
 
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
static void updateValue(int []arr, int n, int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        Console.WriteLine("Invalid Input");
        return;
    }
 
    // Update the values of nodes in segment tree
    updateValueUtil( 0, n - 1, i, new_val, 0);
}
 
// Function to return the sum of elements in range
// from index qs (query start) to qe (query end)
// It mainly uses getSumUtil()
static int getGcd( int n, int qs, int qe)
{
 
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe)
    {
        Console.WriteLine( "Invalid Input");
        return -1;
    }
 
    return getGcdUtil( 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
static int constructGcdUtil(int []arr, int ss, int se, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one element then recur for left and
    // right subtrees and store the sum of values in this node
    int mid = getMid(ss, se);
    st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1),
                constructGcdUtil(arr, mid + 1, se, si * 2 + 2));
    return st[si];
}
 
// Function to construct segment tree from given array. This function
// allocates memory for segment tree and calls constructSTUtil() to
// fill the allocated memory
static void constructGcd(int []arr, int n)
{
    // Allocate memory for the segment tree
 
    // Height of segment tree
    int x = (int)(Math.Ceiling(Math.Log(n)/Math.Log(2)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int)Math.Pow(2, x) - 1;
 
    // Allocate memory
    st = new int[max_size];
 
    // Fill the allocated memory st
    constructGcdUtil(arr, 0, n - 1, 0);
 
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 3, 6, 9, 9, 11 };
    int n = arr.Length;
 
    // Build segment tree from given array
    constructGcd(arr, n);
 
    // Print GCD of values in array from index 1 to 3
    Console.WriteLine( getGcd( n, 1, 3) );
 
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, n, 1, 10);
 
    // Find GCD after the value is updated
    Console.WriteLine( getGcd( n, 1, 3) );
}
}
 
// This code contributed by Rajput-Ji

Javascript

<script>
// javascript implementation of the approach     // segment tree
    var st;
 
    // Recursive function to return gcd of a and b
    function __gcd(a , b) {
        if (b == 0)
            return a;
        return __gcd(b, a % b);
 
    }
 
    // A utility function to get the
    // middle index from corner indexes
    function getMid(s , e) {
        return (s + parseInt((e - s) / 2));
    }
 
    // A recursive function to get the gcd of values in given range
    // of the array. The following are parameters for this function
 
    // st --> Pointer to segment tree
    // si --> Index of current node in the segment tree. Initially
    // 0 is passed as root is always at index 0
    // ss & se --> Starting and ending indexes of the segment represented
    // by current node, i.e., st[si]
    // qs & qe --> Starting and ending indexes of query range
    function getGcdUtil(ss , se , qs , qe , si) {
        // If segment of this node is a part of given range
        // then return the gcd of the segment
        if (qs <= ss && qe >= se)
            return st[si];
 
        // If segment of this node is outside the given range
        if (se < qs || ss > qe)
            return 0;
 
        // If a part of this segment overlaps with the given range
        var mid = getMid(ss, se);
        return __gcd(getGcdUtil(ss, mid, qs, qe, 2 * si + 1), getGcdUtil(mid + 1, se, qs, qe, 2 * si + 2));
    }
 
    // A recursive function to update the nodes which have the given
    // index in their range. The following are parameters
    // si, ss and se are same as getSumUtil()
    // i --> index of the element to be updated. This index is
    // in the input array.
    // diff --> Value to be added to all nodes which have i in range
    function updateValueUtil(ss , se , i , diff , si) {
        // Base Case: If the input index lies outside the range of
        // this segment
        if (i < ss || i > se)
            return;
 
        // If the input index is in range of this node, then update
        // the value of the node and its children
        st[si] = st[si] + diff;
        if (se != ss) {
            var mid = getMid(ss, se);
            updateValueUtil(ss, mid, i, diff, 2 * si + 1);
            updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
        }
    }
 
    // The function to update a value in input array and segment tree.
    // It uses updateValueUtil() to update the value in segment tree
    function updateValue(arr , n , i , new_val) {
        // Check for erroneous input index
        if (i < 0 || i > n - 1) {
            document.write("Invalid Input");
            return;
        }
 
        // Get the difference between new value and old value
        var diff = new_val - arr[i];
 
        // Update the value in array
        arr[i] = new_val;
 
        // Update the values of nodes in segment tree
        updateValueUtil(0, n - 1, i, diff, 0);
    }
 
    // Function to return the sum of elements in range
    // from index qs (query start) to qe (query end)
    // It mainly uses getSumUtil()
    function getGcd(n , qs , qe) {
 
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe) {
            document.write("Invalid Input");
            return -1;
        }
 
        return getGcdUtil(0, n - 1, qs, qe, 0);
    }
 
    // A recursive function that constructs Segment Tree for array[ss..se].
    // si is index of current node in segment tree st
    function constructGcdUtil(arr , ss , se , si) {
        // If there is one element in array, store it in current node of
        // segment tree and return
        if (ss == se) {
            st[si] = arr[ss];
            return arr[ss];
        }
 
        // If there are more than one element then recur for left and
        // right subtrees and store the sum of values in this node
        var mid = getMid(ss, se);
        st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1), constructGcdUtil(arr, mid + 1, se, si * 2 + 2));
        return st[si];
    }
 
    // Function to construct segment tree from given array. This function
    // allocates memory for segment tree and calls constructSTUtil() to
    // fill the allocated memory
    function constructGcd(arr , n) {
        // Allocate memory for the segment tree
 
        // Height of segment tree
        var x = parseInt( (Math.ceil(Math.log(n) / Math.log(2))));
 
        // Maximum size of segment tree
        var max_size = 2 * parseInt( Math.pow(2, x) - 1);
 
        // Allocate memory
        st = Array(max_size).fill(0);
 
        // Fill the allocated memory st
        constructGcdUtil(arr, 0, n - 1, 0);
 
    }
 
    // Driver code
     
        var arr = [ 1, 3, 6, 9, 9, 11 ];
        var n = arr.length;
 
        // Build segment tree from given array
        constructGcd(arr, n);
 
        // Print GCD of values in array from index 1 to 3
        document.write(getGcd(n, 1, 3)+"<br/>");
 
        // Update: set arr[1] = 10 and update corresponding
        // segment tree nodes
        updateValue(arr, n, 1, 10);
 
        // Find GCD after the value is updated
        document.write(getGcd(n, 1, 3));
 
// This code contributed by umadevi9616
</script>
Producción

3
1

Complejidad de tiempo: O (n log n), ya que la construcción del árbol de segmentos tomará O (n log n) tiempo. Donde n es el número de elementos de la array.
Espacio auxiliar: O(n log n), ya que estamos usando espacio adicional para el árbol de segmentos. Donde n es el número de elementos de la array.

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *