Prefijo común más largo usando Trie – Part 1

Dado un conjunto de strings, encuentre el prefijo común más largo.

Input  : {“geeksforgeeks”, “geeks”, “geek”, “geezer”}
Output : "gee"

Input  : {"apple", "ape", "april"}
Output : "ap"

Enfoques anteriores: Coincidencia palabra por palabra , Coincidencia carácter por carácter , Divide y vencerás , Búsqueda binaria .

En este artículo, se analiza un enfoque que utiliza la estructura de fecha Trie .
Pasos:

  • Inserte todas las palabras una por una en el trie. Después de insertar, realizamos una caminata en el trie.
  • En esta caminata, profundice hasta que encontremos un Node que tenga más de 1 hijo (se produce una ramificación) o 0 hijos (uno de la string se agota).

    Esto se debe a que los caracteres (Nodes en trie) que están presentes en el prefijo común más largo deben ser el hijo único de su padre, es decir, no debe haber ramificaciones en ninguno de estos Nodes.

Ilustración de algoritmo considerando strings como – “geeksforgeeks”, “geeks”, “geek”, “geezer”

Longest-Common-Prefix-using-Trie

C++

// A Program to find the longest common
// prefix of the given words
  
#include<bits/stdc++.h>
using namespace std;
  
// Alphabet size (# of symbols)
#define ALPHABET_SIZE (26)
  
// Converts key current character into index
// use only 'a' through 'z' and lower case
#define CHAR_TO_INDEX(c) ((int)c - (int)'a')
  
// Trie node
struct TrieNode
{
    struct TrieNode *children[ALPHABET_SIZE];
  
    // isLeaf is true if the node represents
    // end of a word
    bool isLeaf;
};
  
// Returns new trie node (initialized to NULLs)
struct TrieNode *getNode(void)
{
    struct TrieNode *pNode = new TrieNode;
  
    if (pNode)
    {
        int i;
  
        pNode->isLeaf = false;
  
        for (i = 0; i < ALPHABET_SIZE; i++)
            pNode->children[i] = NULL;
    }
  
    return pNode;
}
  
// If not present, inserts the key into the trie
// If the key is a prefix of trie node, just marks leaf node
void insert(struct TrieNode *root, string key)
{
    int length = key.length();
    int index;
  
    struct TrieNode *pCrawl = root;
  
    for (int level = 0; level < length; level++)
    {
        index = CHAR_TO_INDEX(key[level]);
        if (!pCrawl->children[index])
            pCrawl->children[index] = getNode();
  
        pCrawl = pCrawl->children[index];
    }
  
    // mark last node as leaf
    pCrawl->isLeaf = true;
}
  
// Counts and returns the number of children of the
// current node
int countChildren(struct TrieNode *node, int *index)
{
    int count = 0;
    for (int i=0; i<ALPHABET_SIZE; i++)
    {
        if (node->children[i] != NULL)
        {
            count++;
            *index = i;
        }
    }
    return (count);
}
  
// Perform a walk on the trie and return the
// longest common prefix string
string walkTrie(struct TrieNode *root)
{
    struct TrieNode *pCrawl = root;
    int index;
    string prefix;
  
    while (countChildren(pCrawl, &index) == 1 &&
            pCrawl->isLeaf == false)
    {
        pCrawl = pCrawl->children[index];
        prefix.push_back('a'+index);
    }
    return (prefix);
}
  
// A Function to construct trie
void constructTrie(string arr[], int n, struct TrieNode *root)
{
    for (int i = 0; i < n; i++)
        insert (root, arr[i]);
    return;
}
  
// A Function that returns the longest common prefix
// from the array of strings
string commonPrefix(string arr[], int n)
{
    struct TrieNode *root = getNode();
    constructTrie(arr, n, root);
  
    // Perform a walk on the trie
    return walkTrie(root);
}
  
// Driver program to test above function
int main()
{
    string arr[] = {"geeksforgeeks", "geeks",
                    "geek", "geezer"};
    int n = sizeof (arr) / sizeof (arr[0]);
  
    string ans = commonPrefix(arr, n);
  
    if (ans.length())
        cout << "The longest common prefix is "
             << ans;
    else
        cout << "There is no common prefix";
    return (0);
}

Java

// Java Program to find the longest common
// prefix of the given words
public class Longest_common_prefix {
      
    // Alphabet size (# of symbols)
    static final int ALPHABET_SIZE = 26;
       
    // Trie node
    static class TrieNode
    {
        TrieNode[] children = new TrieNode[ALPHABET_SIZE];
       
        // isLeaf is true if the node represents
        // end of a word
        boolean isLeaf;
          
        // constructor
        public TrieNode() {
            isLeaf = false;
            for (int i = 0; i < ALPHABET_SIZE; i++)
                children[i] = null;
        }
    };
       
    static TrieNode root;
    static int indexs;
       
    // If not present, inserts the key into the trie
    // If the key is a prefix of trie node, just marks
    // leaf node
    static void insert(String key)
    {
        int length = key.length();
        int index;
       
        TrieNode pCrawl = root;
       
        for (int level = 0; level < length; level++)
        {
            index = key.charAt(level) - 'a';
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
       
            pCrawl = pCrawl.children[index];
        }
       
        // mark last node as leaf
        pCrawl.isLeaf = true;
    }
       
    // Counts and returns the number of children of the
    // current node
    static int countChildren(TrieNode node)
    {
        int count = 0;
        for (int i=0; i<ALPHABET_SIZE; i++)
        {
            if (node.children[i] != null)
            {
                count++;
                indexs = i;
            }
        }
        return (count);
    }
       
    // Perform a walk on the trie and return the
    // longest common prefix string
    static String walkTrie()
    {
        TrieNode pCrawl = root;
        indexs = 0;
        String prefix = "";
       
        while (countChildren(pCrawl) == 1 &&
                pCrawl.isLeaf == false)
        {
            pCrawl = pCrawl.children[indexs];
            prefix += (char)('a' + indexs);
        }
        return prefix;
    }
       
    // A Function to construct trie
    static void constructTrie(String arr[], int n)
    {
        for (int i = 0; i < n; i++)
            insert (arr[i]);
        return;
    }
       
    // A Function that returns the longest common prefix
    // from the array of strings
    static String commonPrefix(String arr[], int n)
    {
        root = new TrieNode();
        constructTrie(arr, n);
       
        // Perform a walk on the trie
        return walkTrie();
    }
       
    // Driver program to test above function
    public static void main(String args[])
    {
        String arr[] = {"geeksforgeeks", "geeks",
                        "geek", "geezer"};
        int n = arr.length;
       
        String ans = commonPrefix(arr, n);
       
        if (ans.length() != 0)
            System.out.println("The longest common prefix is "+ans);
        else
            System.out.println("There is no common prefix");
    }
}
// This code is contributed by Sumit Ghosh

Python3

# Python 3 program to find the longest common prefix
ALPHABET_SIZE = 26
indexs = 0
class TrieNode:
    # constructor
    def __init__(self):
        self.isLeaf = False
        self.children = [None]*ALPHABET_SIZE
  
# Function to facilitate insertion in Trie
# If not present, insert the node in the Trie
def insert(key, root):
    pCrawl = root
    for level in range(len(key)):
        index = ord(key[level]) - ord('a')
        if pCrawl.children[index] == None:
            pCrawl.children[index] = TrieNode()
        pCrawl = pCrawl.children[index]
    pCrawl.isLeaf = True
  
# Function to construct Trie
def constructTrie(arr, n, root):
    for i in range(n):
        insert(arr[i], root)
  
# Counts and returns number of children of the node
def countChildren(node):
    count = 0
    for i in range(ALPHABET_SIZE):
        if node.children[i] != None:
            count +=1
            # Keeping track of diversion in the trie
            global indexs
            indexs = i
    return count
      
# Perform walk on trie and return longest common prefix 
def walkTrie(root):
    pCrawl = root
    prefix = ""
    while(countChildren(pCrawl) == 1 and pCrawl.isLeaf == False):
        pCrawl = pCrawl.children[indexs]
        prefix += chr(97 + indexs)
    return prefix or -1
  
# Function that returns longest common prefix 
def commonPrefix(arr, n, root):
    constructTrie(arr, n, root)
    return walkTrie(root)
  
# Driver code to test the code
n = 4
arr = ["geeksforgeeks", "geeks", "geek", "geezer"]
root = TrieNode()
print(commonPrefix(arr,n, root))
  
# This code is Contributed by Akshay Jain (DA-IICT)

C#

// C# Program to find the longest common
// prefix of the given words
using System;
      
public class Longest_common_prefix 
{
      
    // Alphabet size (# of symbols)
    static readonly int ALPHABET_SIZE = 26;
      
    // Trie node
    public class TrieNode
    {
        public TrieNode[] children = new TrieNode[ALPHABET_SIZE];
      
        // isLeaf is true if the node represents
        // end of a word
        public bool isLeaf;
          
        // constructor
        public TrieNode() 
        {
            isLeaf = false;
            for (int i = 0; i < ALPHABET_SIZE; i++)
                children[i] = null;
        }
    };
      
    static TrieNode root;
    static int indexs;
      
    // If not present, inserts the key into the trie
    // If the key is a prefix of trie node, just marks
    // leaf node
    static void insert(String key)
    {
        int length = key.Length;
        int index;
      
        TrieNode pCrawl = root;
      
        for (int level = 0; level < length; level++)
        {
            index = key[level] - 'a';
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
      
            pCrawl = pCrawl.children[index];
        }
      
        // mark last node as leaf
        pCrawl.isLeaf = true;
    }
      
    // Counts and returns the number of children of the
    // current node
    static int countChildren(TrieNode node)
    {
        int count = 0;
        for (int i = 0; i < ALPHABET_SIZE; i++)
        {
            if (node.children[i] != null)
            {
                count++;
                indexs = i;
            }
        }
        return (count);
    }
      
    // Perform a walk on the trie and return the
    // longest common prefix string
    static String walkTrie()
    {
        TrieNode pCrawl = root;
        indexs = 0;
        String prefix = "";
      
        while (countChildren(pCrawl) == 1 &&
                pCrawl.isLeaf == false)
        {
            pCrawl = pCrawl.children[indexs];
            prefix += (char)('a' + indexs);
        }
        return prefix;
    }
      
    // A Function to construct trie
    static void constructTrie(String []arr, int n)
    {
        for (int i = 0; i < n; i++)
            insert (arr[i]);
        return;
    }
      
    // A Function that returns the longest common prefix
    // from the array of strings
    static String commonPrefix(String []arr, int n)
    {
        root = new TrieNode();
        constructTrie(arr, n);
      
        // Perform a walk on the trie
        return walkTrie();
    }
      
    // Driver program to test above function
    public static void Main(String []args)
    {
        String []arr = {"geeksforgeeks", "geeks",
                        "geek", "geezer"};
        int n = arr.Length;
      
        String ans = commonPrefix(arr, n);
      
        if (ans.Length != 0)
            Console.WriteLine("The longest common prefix is "+ans);
        else
            Console.WriteLine("There is no common prefix");
    }
}
  
// This code contributed by Rajput-Ji

Producción :

The longest common prefix is gee

Complejidad del tiempo: Insertar todas las palabras en el trie toma tiempo O (MN) y realizar una caminata en el trie toma tiempo O (M), donde-

N = Number of strings
M = Length of the largest string

Espacio auxiliar: Para almacenar todas las strings, necesitamos asignar espacio O(26*M*N) ~ O(MN) para el Trie.

 
Este artículo es una contribución de Rachit Belwariar . Si le gusta GeeksforGeeks y le gustaría contribuir, también puede escribir un artículo usando contribuya.geeksforgeeks.org o envíe su artículo por correo a contribuya@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.

Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *