Dada una string S de longitud N , la tarea es encontrar la substring balanceada más pequeña en S. Si tal substring no está presente, imprima -1 .
Una string está equilibrada si cada letra de la string aparece tanto en mayúsculas como en minúsculas, es decir, «AabB» es una string equilibrada mientras que «Ab» no lo es.
Ejemplos:
Entrada: S = “azABaabba”
Salida: ABaab
Explicación:
La substring {S[2], …, S[6]} ( indexación basada en 0 ) es la substring más pequeña que está balanceada.Entrada: S = “Tecnocat”
Salida: -1
Enfoque ingenuo: el enfoque más simple es generar todas las substrings posibles de la string dada y verificar si existe alguna substring que satisfaga las condiciones dadas. Imprime la más pequeña de todas esas substrings.
Complejidad temporal: O(N 3 )
Espacio auxiliar: O(N)
Enfoque Eficiente: Para optimizar el enfoque anterior, la idea es utilizar el concepto de Ventana Deslizante . Siga los pasos a continuación para resolver el problema:
- Recorra la string dada y almacene los caracteres cuyas únicas formas en minúsculas o mayúsculas están presentes en la string de entrada en un Map mp .
- Inicialice dos arrays para realizar un seguimiento de los caracteres en minúsculas y mayúsculas obtenidos hasta el momento.
- Ahora, recorra la string manteniendo dos punteros i y st (inicializados con 0 ), donde st apuntará al inicio de la substring actual e i apuntará al carácter actual.
- Si el carácter actual está en mp , ignore todos los caracteres obtenidos hasta el momento y comience desde el siguiente carácter y ajuste las arrays en consecuencia.
- Si el carácter actual no está en mp , elimine los caracteres adicionales del comienzo de la substring con la ayuda del puntero st , de modo que la frecuencia de cualquier carácter no se convierta en 0 y ajuste las arrays en consecuencia.
- Ahora, verifique si la substring {S[st], ….., S[i]} está balanceada o no. Si balanceada e i – st + 1 es menor que la longitud de la substring balanceada obtenida hasta ahora. Actualice la longitud y también almacene los índices de inicio y final de la substring, es decir, st e i respectivamente.
- Repita los pasos hasta el final de la cuerda.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the current // string is balanced or not bool balanced(int small[], int caps[]) { // For every character, check if // there exists uppercase as well // as lowercase characters for (int i = 0; i < 26; i++) { if (small[i] != 0 && (caps[i] == 0)) return 0; else if ((small[i] == 0) && (caps[i] != 0)) return 0; } return 1; } // Function to find smallest length substring // in the given string which is balanced void smallestBalancedSubstring(string s) { // Store frequency of // lowercase characters int small[26]; // Stores frequency of // uppercase characters int caps[26]; memset(small, 0, sizeof(small)); memset(caps, 0, sizeof(caps)); // Count frequency of characters for (int i = 0; i < s.length(); i++) { if (s[i] >= 65 && s[i] <= 90) caps[s[i] - 'A']++; else small[s[i] - 'a']++; } // Mark those characters which // are not present in both // lowercase and uppercase unordered_map<char, int> mp; for (int i = 0; i < 26; i++) { if (small[i] && !caps[i]) mp[char(i + 'a')] = 1; else if (caps[i] && !small[i]) mp[char(i + 'A')] = 1; } // Initialize the frequencies // back to 0 memset(small, 0, sizeof(small)); memset(caps, 0, sizeof(caps)); // Marks the start and // end of current substring int i = 0, st = 0; // Marks the start and end // of required substring int start = -1, end = -1; // Stores the length of // smallest balanced substring int minm = INT_MAX; while (i < s.length()) { if (mp[s[i]]) { // Remove all characters // obtained so far while (st < i) { if (s[st] >= 65 && s[st] <= 90) caps[s[st] - 'A']--; else small[s[st] - 'a']--; st++; } i += 1; st = i; } else { if (s[i] >= 65 && s[i] <= 90) caps[s[i] - 'A']++; else small[s[i] - 'a']++; // Remove extra characters from // front of the current substring while (1) { if (s[st] >= 65 && s[st] <= 90 && caps[s[st] - 'A'] > 1) { caps[s[st] - 'A']--; st++; } else if (s[st] >= 97 && s[st] <= 122 && small[s[st] - 'a'] > 1) { small[s[st] - 'a']--; st++; } else break; } // If substring (st, i) is balanced if (balanced(small, caps)) { if (minm > (i - st + 1)) { minm = i - st + 1; start = st; end = i; } } i += 1; } } // No balanced substring if (start == -1 || end == -1) cout << -1 << endl; // Store answer string else { string ans = ""; for (int i = start; i <= end; i++) ans += s[i]; cout << ans << endl; } } // Driver Code int main() { // Given string string s = "azABaabba"; smallestBalancedSubstring(s); return 0; }
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to check if the current // string is balanced or not static boolean balanced(int small[], int caps[]) { // For every character, check if // there exists uppercase as well // as lowercase characters for(int i = 0; i < 26; i++) { if (small[i] != 0 && (caps[i] == 0)) return false; else if ((small[i] == 0) && (caps[i] != 0)) return false; } return true; } // Function to find smallest length substring // in the given string which is balanced static void smallestBalancedSubstring(String s) { // Store frequency of // lowercase characters int[] small = new int[26]; // Stores frequency of // uppercase characters int[] caps = new int[26]; Arrays.fill(small, 0); Arrays.fill(caps, 0); // Count frequency of characters for(int i = 0; i < s.length(); i++) { if (s.charAt(i) >= 65 && s.charAt(i) <= 90) caps[s.charAt(i) - 'A']++; else small[s.charAt(i) - 'a']++; } // Mark those characters which // are not present in both // lowercase and uppercase Map<Character, Integer> mp = new HashMap<Character, Integer>(); for(int i = 0; i < 26; i++) { if (small[i] != 0 && caps[i] == 0) mp.put((char)(i + 'a'), 1); else if (caps[i] != 0 && small[i] == 0) mp.put((char)(i + 'A'), 1); // mp[char(i + 'A')] = 1; } // Initialize the frequencies // back to 0 Arrays.fill(small, 0); Arrays.fill(caps, 0); // Marks the start and // end of current substring int i = 0, st = 0; // Marks the start and end // of required substring int start = -1, end = -1; // Stores the length of // smallest balanced substring int minm = Integer.MAX_VALUE; while (i < s.length()) { if (mp.get(s.charAt(i)) != null) { // Remove all characters // obtained so far while (st < i) { if (s.charAt(st) >= 65 && s.charAt(st) <= 90) caps[s.charAt(st) - 'A']--; else small[s.charAt(st) - 'a']--; st++; } i += 1; st = i; } else { if (s.charAt(i) >= 65 && s.charAt(i) <= 90) caps[s.charAt(i) - 'A']++; else small[s.charAt(i) - 'a']++; // Remove extra characters from // front of the current substring while (true) { if (s.charAt(st) >= 65 && s.charAt(st) <= 90 && caps[s.charAt(st) - 'A'] > 1) { caps[s.charAt(st) - 'A']--; st++; } else if (s.charAt(st) >= 97 && s.charAt(st) <= 122 && small[s.charAt(st) - 'a'] > 1) { small[s.charAt(st) - 'a']--; st++; } else break; } // If substring (st, i) is balanced if (balanced(small, caps)) { if (minm > (i - st + 1)) { minm = i - st + 1; start = st; end = i; } } i += 1; } } // No balanced substring if (start == -1 || end == -1) System.out.println(-1); // Store answer string else { String ans = ""; for(int j = start; j <= end; j++) ans += s.charAt(j); System.out.println(ans); } } // Driver Code public static void main(String[] args) { // Given string String s = "azABaabba"; smallestBalancedSubstring(s); } } // This code is contributed by Dharanendra L V
Python3
# python 3 program for the above approach import sys # Function to check if the current # string is balanced or not def balanced(small, caps): # For every character, check if # there exists uppercase as well # as lowercase characters for i in range(26): if (small[i] != 0 and (caps[i] == 0)): return 0 elif((small[i] == 0) and (caps[i] != 0)): return 0 return 1 # Function to find smallest length substring # in the given string which is balanced def smallestBalancedSubstring(s): # Store frequency of # lowercase characters small = [0 for i in range(26)] # Stores frequency of # uppercase characters caps = [0 for i in range(26)] # Count frequency of characters for i in range(len(s)): if (ord(s[i]) >= 65 and ord(s[i]) <= 90): caps[ord(s[i]) - 65] += 1 else: small[ord(s[i]) - 97] += 1 # Mark those characters which # are not present in both # lowercase and uppercase mp = {} for i in range(26): if (small[i] and caps[i]==0): mp[chr(i + 97)] = 1 elif (caps[i] and small[i]==0): mp[chr(i + 65)] = 1 # Initialize the frequencies # back to 0 for i in range(len(small)): small[i] = 0 caps[i] = 0 # Marks the start and # end of current substring i = 0 st = 0 # Marks the start and end # of required substring start = -1 end = -1 # Stores the length of # smallest balanced substring minm = sys.maxsize while (i < len(s)): if(s[i] in mp): # Remove all characters # obtained so far while (st < i): if (ord(s[st]) >= 65 and ord(s[st]) <= 90): caps[ord(s[st]) - 65] -= 1 else: small[ord(s[st]) - 97] -= 1 st += 1 i += 1 st = i else: if (ord(s[i]) >= 65 and ord(s[i]) <= 90): caps[ord(s[i]) - 65] += 1 else: small[ord(s[i] )- 97] += 1 # Remove extra characters from # front of the current substring while (1): if (ord(s[st]) >= 65 and ord(s[st])<= 90 and caps[ord(s[st])- 65] > 1): caps[ord(s[st]) - 65] -= 1 st += 1 elif (ord(s[st]) >= 97 and ord(s[st]) <= 122 and small[ord(s[st]) - 97] > 1): small[ord(s[st]) - 97] -= 1 st += 1 else: break # If substring (st, i) is balanced if (balanced(small, caps)): if (minm > (i - st + 1)): minm = i - st + 1 start = st end = i i += 1 # No balanced substring if (start == -1 or end == -1): print(-1) # Store answer string else: ans = "" for i in range(start,end+1,1): ans += s[i] print(ans) # Driver Code if __name__ == '__main__': # Given string s = "azABaabba" smallestBalancedSubstring(s) # This code is contributed by bgangwar59.
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { public const int MaxValue = 2147483647; // Function to check if the current // string is balanced or not static bool balanced(int []small, int []caps) { // For every character, check if // there exists uppercase as well // as lowercase characters for(int i = 0; i < 26; i++) { if (small[i] != 0 && (caps[i] == 0)) return false; else if ((small[i] == 0) && (caps[i] != 0)) return false; } return true; } // Function to find smallest length substring // in the given string which is balanced static void smallestBalancedSubstring(string s) { // Store frequency of // lowercase characters int[] small = new int[26]; int i; // Stores frequency of // uppercase characters int[] caps = new int[26]; Array.Clear(small, 0, small.Length); Array.Clear(caps, 0, caps.Length); // Count frequency of characters for(i = 0; i < s.Length; i++) { if (s[i] >= 65 && s[i] <= 90) caps[(int)s[i] - 65]++; else small[(int)s[i]- 97]++; } // Mark those characters which // are not present in both // lowercase and uppercase Dictionary<char,int> mp = new Dictionary<char,int>(); for(i = 0; i < 26; i++) { if (small[i] != 0 && caps[i] == 0){ mp[(char)(i+97)] = 1; } else if (caps[i] != 0 && small[i] == 0) mp[(char)(i+65)] = 1; // mp[char(i + 'A')] = 1; } // Initialize the frequencies // back to 0 Array.Clear(small, 0, small.Length); Array.Clear(caps, 0, caps.Length); // Marks the start and // end of current substring i = 0; int st = 0; // Marks the start and end // of required substring int start = -1, end = -1; // Stores the length of // smallest balanced substring int minm = MaxValue; while (i < s.Length) { if (mp.ContainsKey(s[i])) { // Remove all characters // obtained so far while (st < i) { if ((int)s[st] >= 65 && (int)s[st] <= 90) caps[(int)s[st] - 65]--; else small[(int)s[st] - 97]--; st++; } i += 1; st = i; } else { if ((int)s[i] >= 65 && (int)s[i] <= 90) caps[(int)s[i] - 65]++; else small[(int)s[i] - 97]++; // Remove extra characters from // front of the current substring while (true) { if ((int)s[st] >= 65 && (int)s[st] <= 90 && caps[(int)s[st] - 65] > 1) { caps[(int)s[st] - 65]--; st++; } else if ((int)s[st] >= 97 && (int)s[st] <= 122 && small[(int)s[st] - 97] > 1) { small[(int)s[st] - 97]--; st++; } else break; } // If substring (st, i) is balanced if (balanced(small, caps)) { if (minm > (i - st + 1)) { minm = i - st + 1; start = st; end = i; } } i += 1; } } // No balanced substring if (start == -1 || end == -1) Console.WriteLine(-1); // Store answer string else { string ans = ""; for(int j = start; j <= end; j++) ans += s[j]; Console.WriteLine(ans); } } // Driver Code public static void Main() { // Given string string s = "azABaabba"; smallestBalancedSubstring(s); } } // This code is contributed by SURENDRA_GANGWAR.
Javascript
<script> // Javascript program for the above approach let MaxValue = 2147483647; // Function to check if the current // string is balanced or not function balanced(small, caps) { // For every character, check if // there exists uppercase as well // as lowercase characters for(let i = 0; i < 26; i++) { if (small[i] != 0 && (caps[i] == 0)) return false; else if ((small[i] == 0) && (caps[i] != 0)) return false; } return true; } // Function to find smallest length substring // in the given string which is balanced function smallestBalancedSubstring(s) { // Store frequency of // lowercase characters let small = new Array(26); let i; // Stores frequency of // uppercase characters let caps = new Array(26); small.fill(0); caps.fill(0); // Count frequency of characters for(i = 0; i < s.length; i++) { if (s[i].charCodeAt() >= 65 && s[i].charCodeAt() <= 90) caps[s[i].charCodeAt() - 65]++; else small[s[i].charCodeAt()- 97]++; } // Mark those characters which // are not present in both // lowercase and uppercase let mp = new Map(); for(i = 0; i < 26; i++) { if (small[i] != 0 && caps[i] == 0){ mp.set(String.fromCharCode(i+97), 1); } else if (caps[i] != 0 && small[i] == 0) mp.set(String.fromCharCode(i+65), 1); // mp[char(i + 'A')] = 1; } // Initialize the frequencies // back to 0 small.fill(0); caps.fill(0); // Marks the start and // end of current substring i = 0; let st = 0; // Marks the start and end // of required substring let start = -1, end = -1; // Stores the length of // smallest balanced substring let minm = MaxValue; while (i < s.length) { if (mp.has(s[i])) { // Remove all characters // obtained so far while (st < i) { if (s[st].charCodeAt() >= 65 && s[st].charCodeAt() <= 90) caps[s[st].charCodeAt() - 65]--; else small[s[st].charCodeAt() - 97]--; st++; } i += 1; st = i; } else { if (s[i].charCodeAt() >= 65 && s[i].charCodeAt() <= 90) caps[s[i].charCodeAt() - 65]++; else small[s[i].charCodeAt() - 97]++; // Remove extra characters from // front of the current substring while (true) { if (s[st].charCodeAt() >= 65 && s[st].charCodeAt() <= 90 && caps[s[st].charCodeAt() - 65] > 1) { caps[s[st].charCodeAt() - 65]--; st++; } else if (s[st].charCodeAt() >= 97 && s[st].charCodeAt() <= 122 && small[s[st].charCodeAt() - 97] > 1) { small[s[st].charCodeAt() - 97]--; st++; } else break; } // If substring (st, i) is balanced if (balanced(small, caps)) { if (minm > (i - st + 1)) { minm = i - st + 1; start = st; end = i; } } i += 1; } } // No balanced substring if (start == -1 || end == -1) document.write(-1 + "</br>"); // Store answer string else { let ans = ""; for(let j = start; j <= end; j++) ans += s[j]; document.write(ans + "</br>"); } } // Given string let s = "azABaabba"; smallestBalancedSubstring(s); // This code is contributed by decode2207. </script>
ABaab
Complejidad temporal: O(N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por promaroy20 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA