Índice más lejano al que se puede llegar desde el índice Kth de una array dada mediante operaciones dadas

Dada una array arr[] que consta de N enteros y tres enteros X , Y y K , la tarea es encontrar el índice más lejano que se puede alcanzar mediante las siguientes operaciones:

  • Si arr[i] ≥ arr[i + 1]: Pasar del índice i a i + 1 .
  • Si arr[i] < arr[i+1]: Disminuya X en 1 si el valor de X > 0 o disminuya Y en (arr[i + 1] – arr[i]) si el valor de Y > (arr [i+1] – arr[i]) .

Ejemplos:

Entrada: arr[] = {4, 2, 7, 6, 9, 14, 12}, X = 1, Y = 5, K = 0
Salida: 4
Explicación: 
Inicialmente, K = 0.
arr[0] > arr [1]: Por lo tanto, muévase al índice 1.
arr[1] < arr[2]: Decremente X en 1 y muévase al índice 2. Ahora X = 0.
arr[2] > arr[3]: Muévase al índice 3 .arr
[3] < arr[4]: Decrementa Y en 3 y pasa al índice 4. Ahora Y = 2
arr[4] < arr[5]: Ni X > 0 ni Y > 5. Por lo tanto, no es posible para pasar al índice siguiente.
Por lo tanto, el índice máximo que se puede alcanzar es 4.

Entrada: arr[] = {14, 3, 19, 3}, X = 17, Y = 0, K = 1
Salida: 3

Enfoque: La idea es usar X para la diferencia máxima entre índices e Y para la diferencia restante. Siga los pasos a continuación para resolver este problema:

  • Declarar una cola de prioridad .
  • Recorra la array dada arr[] y realice las siguientes operaciones:
    • Si el elemento actual ( arr[i] ) es mayor que el siguiente elemento ( arr[i + 1] ), pase al siguiente índice.
    • De lo contrario, inserte la diferencia de (arr[i + 1] – arr[i]) en la cola de prioridad .
    • Si el tamaño de la cola de prioridad es mayor que Y , disminuya X por el elemento superior de la cola de prioridad y extraiga ese elemento.
    • Si X es menor que 0 , el índice más lejano que se puede alcanzar es i .
  • Después de completar los pasos anteriores, si el valor de X es al menos 0 , entonces el índice más lejano que se puede alcanzar es (N – 1) .

A continuación se muestra la implementación del enfoque anterior:

Java

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the farthest index
// that can be reached
void farthestHill(int arr[], int X,
                  int Y, int N, int K)
{
    int i, diff;
 
    // Declare a priority queue
    priority_queue<int> pq;
 
    // Iterate the array
    for (i = K; i < N - 1; i++) {
 
        // If current element is
        // greater than the next element
        if (arr[i] >= arr[i + 1])
            continue;
 
        // Otherwise, store their difference
        diff = arr[i + 1] - arr[i];
 
        // Push diff into pq
        pq.push(diff);
 
        // If size of pq exceeds Y
        if (pq.size() > Y) {
 
            // Decrease X by the
            // top element of pq
            X -= pq.top();
 
            // Remove top of pq
            pq.pop();
        }
 
        // If X is exhausted
        if (X < 0) {
 
            // Current index is the
            // farthest possible
            cout << i;
            return;
        }
    }
 
    // Print N-1 as farthest index
    cout << N - 1;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 2, 7, 6, 9, 14, 12 };
    int X = 5, Y = 1;
    int K = 0;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    farthestHill(arr, X, Y, N, K);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
     
// Function to find the farthest index
// that can be reached
public static void farthestHill(int arr[], int X,
                                int Y, int N, int K)
{
    int i, diff;
     
    // Declare a priority queue
    PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
   
    // Iterate the array
    for(i = K; i < N - 1; i++)
    {
         
        // If current element is
        // greater than the next element
        if (arr[i] >= arr[i + 1])
            continue;
   
        // Otherwise, store their difference
        diff = arr[i + 1] - arr[i];
   
        // Push diff into pq
        pq.add(diff);
   
        // If size of pq exceeds Y
        if (pq.size() > Y)
        {
             
            // Decrease X by the
            // top element of pq
            X -= pq.peek();
   
            // Remove top of pq
            pq.poll();
        }
   
        // If X is exhausted
        if (X < 0)
        {
             
            // Current index is the
            // farthest possible
            System.out.print(i);
            return;
        }
    }
   
    // Print N-1 as farthest index
    System.out.print(N - 1);
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 4, 2, 7, 6, 9, 14, 12 };
    int X = 5, Y = 1;
    int K = 0;
    int N = arr.length;
   
    // Function Call
    farthestHill(arr, X, Y, N, K);
}
}
 
// This code is contributed by divyeshrabadiya07

Python3

# Python3 program for the above approach
  
# Function to find the farthest index
# that can be reached
def farthestHill(arr, X, Y, N, K):
     
    # Declare a priority queue
    pq = []
  
    # Iterate the array
    for i in range(K, N - 1, 1):
  
        # If current element is
        # greater than the next element
        if (arr[i] >= arr[i + 1]):
            continue
  
        # Otherwise, store their difference
        diff = arr[i + 1] - arr[i]
  
        # Push diff into pq
        pq.append(diff)
  
        # If size of pq exceeds Y
        if (len(pq) > Y):
  
            # Decrease X by the
            # top element of pq
            X -= pq[-1]
  
            # Remove top of pq
            pq[-1]
         
        # If X is exhausted
        if (X < 0):
             
            # Current index is the
            # farthest possible
            print(i)
            return
         
    # Print N-1 as farthest index
    print(N - 1)
 
# Driver Code
arr = [ 4, 2, 7, 6, 9, 14, 12 ]
X = 5
Y = 1
K = 0
N = len(arr)
  
# Function Call
farthestHill(arr, X, Y, N, K)
 
# This code is contributed by code_hunt

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the farthest index
// that can be reached
public static void farthestHill(int[] arr, int X,
                                int Y, int N, int K)
{
    int i, diff;
     
    // Declare a priority queue
    List<int> pq = new List<int>();
     
    // Iterate the array
    for(i = K; i < N - 1; i++)
    {
         
        // If current element is
        // greater than the next element
        if (arr[i] >= arr[i + 1])
            continue;
             
        // Otherwise, store their difference
        diff = arr[i + 1] - arr[i];
         
        // Push diff into pq
        pq.Add(diff);
        pq.Sort();
        pq.Reverse();
         
        // If size of pq exceeds Y
        if (pq.Count > Y)
        {
             
            // Decrease X by the
            // top element of pq
            X -= pq[0];
             
            // Remove top of pq
            pq.RemoveAt(0);
        }
 
        // If X is exhausted
        if (X < 0)
        {
             
            // Current index is the
            // farthest possible
            Console.Write(i);
            return;
        }
    }
     
    // Print N-1 as farthest index
    Console.Write(N - 1);
}
 
// Driver code
public static void Main(String[] args)
{
    int[] arr = { 4, 2, 7, 6, 9, 14, 12 };
    int X = 5, Y = 1;
    int K = 0;
    int N = arr.Length;
     
    // Function Call
    farthestHill(arr, X, Y, N, K);
}
}
 
// This code is contributed by gauravrajput1

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to find the farthest index
// that can be reached
function farthestHill(arr, X, Y, N, K)
{
    var i, diff;
     
    // Declare a priority queue
    var pq = [];
     
    // Iterate the array
    for(i = K; i < N - 1; i++)
    {
         
        // If current element is
        // greater than the next element
        if (arr[i] >= arr[i + 1])
            continue;
             
        // Otherwise, store their difference
        diff = arr[i + 1] - arr[i];
         
        // Push diff into pq
        pq.push(diff);
        pq.sort();
        pq = pq.reverse();
         
        // If size of pq exceeds Y
        if (pq.length > Y)
        {
             
            // Decrease X by the
            // top element of pq
            X -= pq[0];
             
            // Remove top of pq
            pq = pq.slice(1);
        }
 
        // If X is exhausted
        if (X < 0)
        {
             
            // Current index is the
            // farthest possible
            document.write(i);
            return;
        }
    }
     
    // Print N-1 as farthest index
    document.write(N - 1);
}
 
// Driver code
    var arr = [4, 2, 7, 6, 9, 14, 12];
    var X = 5, Y = 1;
    var K = 0;
    var N = arr.length;
     
    // Function Call
    farthestHill(arr, X, Y, N, K);
 
// This code is contributed by SURENDRA_GANGWAR.
</script>
Producción: 

4

 

Complejidad de tiempo: O(N*log(E)), donde E es el número máximo de elementos en la cola de prioridad.
Espacio Auxiliar: O(E)

Publicación traducida automáticamente

Artículo escrito por ManikantaBandla y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *