Dado un número binario como una string str de longitud L . La tarea es encontrar el número mínimo de operaciones necesarias para que el número se convierta en 2 L -1 , que es una string que consta de solo 1 de longitud L .
En cada operación, el número N puede ser reemplazado por N x o (N + 1) .
Ejemplos:
Entrada: str = “10010111”
Salida: 5
N = 10010111, N + 1 = 10011000, entonces N xor (N + 1) = 00001111
N = 00001111, N + 1 = 00010000, entonces N xor (N + 1) = 00011111
N = 00011111, N + 1 = 00100000, entonces N xor (N + 1) = 00111111
N = 00111111, N + 1 = 01000000, entonces N xor (N + 1) = 01111111
N = 01111111, N + 1 = 10000000, entonces N xor (N + 1) = 11111111
Entrada: str = “101000100101011101”
Salida: 17
Planteamiento: Después de realizar la operación dada, se puede observar que para obtener el número requerido, al final, el número de operaciones será:
Número de operaciones = longitud de la string (después de eliminar los 0 iniciales) – recuento de 1 consecutivos desde el final (comenzando desde el bit menos significativo)
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the number // of operations required int changeToOnes(string str) { // ctr will store the number of // consecutive ones at the end // of the given binary string int i, l, ctr = 0; l = str.length(); // Loop to find number of 1s // at the end of the string for (i = l - 1; i >= 0; i--) { // If the current character is 1 if (str[i] == '1') ctr++; // If we encounter the first 0 // from the LSB position then // we'll break the loop else break; } // Number of operations // required is (l - ctr) return l - ctr; } // Function to remove leading // zeroes from the string string removeZeroesFromFront(string str) { string s; int i = 0; // Loop until s[i] becomes // not equal to 1 while (i < str.length() && str[i] == '0') i++; // If we reach the end of // the string, it means that // string contains only 0's if (i == str.length()) s = "0"; // Return the string without // leading zeros else s = str.substr(i, str.length() - i); return s; } // Driver code int main() { string str = "10010111"; // Removing the leading zeroes str = removeZeroesFromFront(str); cout << changeToOnes(str); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the number // of operations required static int changeToOnes(String str) { // ctr will store the number of // consecutive ones at the end // of the given binary string int i, l, ctr = 0; l = str.length(); // Loop to find number of 1s // at the end of the string for (i = l - 1; i >= 0; i--) { // If the current character is 1 if (str.charAt(i) == '1') ctr++; // If we encounter the first 0 // from the LSB position then // we'll break the loop else break; } // Number of operations // required is (l - ctr) return l - ctr; } // Function to remove leading // zeroes from the string static String removeZeroesFromFront(String str) { String s; int i = 0; // Loop until s[i] becomes // not equal to 1 while (i < str.length() && str.charAt(i) == '0') i++; // If we reach the end of // the string, it means that // string contains only 0's if (i == str.length()) s = "0"; // Return the string without // leading zeros else s = str.substring(i, str.length() - i); return s; } // Driver code public static void main(String[] args) { String str = "10010111"; // Removing the leading zeroes str = removeZeroesFromFront(str); System.out.println(changeToOnes(str)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach # Function to return the number # of operations required def changeToOnes(string) : # ctr will store the number of # consecutive ones at the end # of the given binary string ctr = 0; l = len(string); # Loop to find number of 1s # at the end of the string for i in range(l - 1, -1, -1) : # If the current character is 1 if (string[i] == '1') : ctr += 1; # If we encounter the first 0 # from the LSB position then # we'll break the loop else : break; # Number of operations # required is (l - ctr) return l - ctr; # Function to remove leading # zeroes from the string def removeZeroesFromFront(string) : s = ""; i = 0; # Loop until s[i] becomes # not equal to 1 while (i < len(string) and string[i] == '0') : i += 1; # If we reach the end of # the string, it means that # string contains only 0's if (i == len(string)) : s = "0"; # Return the string without # leading zeros else : s = string[i: len(string) - i]; return s; # Driver code if __name__ == "__main__" : string = "10010111"; # Removing the leading zeroes string = removeZeroesFromFront(string); print(changeToOnes(string)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { // Function to return the number // of operations required static int changeToOnes(String str) { // ctr will store the number of // consecutive ones at the end // of the given binary string int i, l, ctr = 0; l = str.Length; // Loop to find number of 1s // at the end of the string for (i = l - 1; i >= 0; i--) { // If the current character is 1 if (str[i] == '1') ctr++; // If we encounter the first 0 // from the LSB position then // we'll break the loop else break; } // Number of operations // required is (l - ctr) return l - ctr; } // Function to remove leading // zeroes from the string static String removeZeroesFromFront(String str) { String s; int i = 0; // Loop until s[i] becomes // not equal to 1 while (i < str.Length && str[i] == '0') i++; // If we reach the end of // the string, it means that // string contains only 0's if (i == str.Length) s = "0"; // Return the string without // leading zeros else s = str.Substring(i, str.Length - i); return s; } // Driver code public static void Main(String[] args) { String str = "10010111"; // Removing the leading zeroes str = removeZeroesFromFront(str); Console.WriteLine(changeToOnes(str)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript implementation of the approach // Function to return the number // of operations required function changeToOnes(str) { // ctr will store the number of // consecutive ones at the end // of the given binary string var i, l, ctr = 0; l = str.length; // Loop to find number of 1s // at the end of the string for (i = l - 1; i >= 0; i--) { // If the current character is 1 if (str[i] == '1') ctr++; // If we encounter the first 0 // from the LSB position then // we'll break the loop else break; } // Number of operations // required is (l - ctr) return l - ctr; } // Function to remove leading // zeroes from the string function removeZeroesFromFront(str) { var s; var i = 0; // Loop until s[i] becomes // not equal to 1 while (i < str.length && str[i] == '0') i++; // If we reach the end of // the string, it means that // string contains only 0's if (i == str.length) s = "0"; // Return the string without // leading zeros else s = str.substring(i, str.length - i); return s; } // Driver code var str = "10010111"; // Removing the leading zeroes str = removeZeroesFromFront(str); document.write( changeToOnes(str)); </script>
5
Complejidad de tiempo: O(n)