Ordenar la array según sus cubos de cada elemento.

Dada una array arr[] de N enteros, la tarea es ordenar la array según los cubos de cada elemento.

Ejemplos:  

Entrada: arr[] = { 4, -1, 0, -5, 6 } 
Salida: -5 -1 0 4 6

Entrada: arr[] = { 12, 3, 0, 11 } 
Salida: 0 3 11 12 

Enfoque: la idea es usar la función Comparator con una función de clasificación incorporada() para clasificar la array de acuerdo con los cubos de sus elementos. A continuación se muestra la función de comparación utilizada:  

bool comparator_function(int a, int b)
{
    x = pow(a, 3);
    y = pow(b, 3);
    return x < y;
}

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Comparator function which returns
// a^3 is less than b^3
bool cmp(int a, int b)
{
    int x = pow(a, 3);
    int y = pow(b, 3);
    return x < y;
}
 
// Function to sort the cubes of array
bool sortArr(int arr[], int n)
{
    // Sort the array
    sort(arr, arr + n, cmp);
 
    // Print the array
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 4, -1, 0, -5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    sortArr(arr, n);
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
class GFG {
 
// Function to sort the cubes of array
static void sortArr(int arr[], int n)
{
    Integer[] ar = new Integer[n];
 
    for (int i = 0; i < n; i++)
        ar[i] = arr[i];
 
    // Sort the array
    Arrays.sort(ar, new Comparator<Integer>()
    {
        public int compare(Integer a, Integer b)
        {
            int x = (int)Math.pow(a, 3);
            int y = (int)Math.pow(b, 3);
            return (x < y) ? -1 : 1;
        }
    });
 
    // Print the array
    for (int i = 0; i < n; i++)
    {
        System.out.print(ar[i] + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    // Given array
    int arr[] = { 4, -1, 0, -5, 6 };
    int n = arr.length;
 
    // Function Call
    sortArr(arr, n);
}
}
 
// This code is contributed by offbeat

Python3

# Python3 program for the above approach
 
# Function to sort the cubes of array
def sortArr(arr, n):
 
    # Make a list of tuples in
    # the form(cube of (num), num)
    arr = [(i * i * i, i) for i in arr];
     
    # Sort the array according to
    # the their respective cubes
    arr.sort()
      
    # Print the array
    for i in range(n):
        print(arr[i][1], end = " ");
 
# Driver Code
if __name__ == "__main__" :
 
    # Given array
    arr = [ 4, -1, 0, -5, 6 ];
    n = len(arr);
 
    # Function Call
    sortArr(arr, n);
 
# This code is contributed by AnkitRai01

C#

// C# program for the above approach
using System;
using System.Collections;
class compare : IComparer
{  
    // Call CaseInsensitiveComparer.Compare
    public int Compare(Object x,
                       Object y)
    {
        return (
          new CaseInsensitiveComparer()).Compare(x,y);
    }
}
   
class GFG{
 
// Function to sort the cubes of array
static void sortArr(int []arr,
                    int n)
{
    int[] ar = new int[n];
 
    for (int i = 0; i < n; i++)
        ar[i] = arr[i];
     
    IComparer cmp = new compare();
 
    // Sort the array
    Array.Sort(ar, cmp);
 
    // Print the array
    for (int i = 0; i < n; i++)
    {
        Console.Write(ar[i] + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    // Given array
    int []arr = {4, -1, 0, -5, 6};
    int n = arr.Length;
 
    // Function Call
    sortArr(arr, n);
}
}
 
// This code is contributed by gauravrajput1

Javascript

<script>
//Javascript implementation to check whether
// K times of a element is present in
// the array
 
// Function to sort the cubes of array
function sortArr(arr, n)
{
    // Sort the array
    arr.sort( function( a , b){
        var x = Math.pow(a,3);
        var y = Math.pow(b,3);
        if(x > y) return 1;
        if(x < y) return -1;
        return 0;
    });
 
    // Print the array
    for (var i = 0; i < n; i++) {
        document.write(arr[i] + " ");
    }
}
 
// Driver program to test above
var arr = [ 4, -1, 0, -5, 6 ];
var n = arr.length;
sortArr(arr, n);
// This code is contributed by shivani.
</script>
Producción: 

-5 -1 0 4 6

 

Complejidad de tiempo: O(N*log N) , donde N es el número de elementos en la array. 

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *