Dado un número entero N y dos jugadores, A y B están jugando un juego. En el turno de cada jugador, ese jugador hace un movimiento restando un divisor de N actual (que es menor que N) de N actual, formando así una nueva N para el próximo turno . El jugador que no le queda ningún divisor para restar pierde el juego. La tarea es decir qué jugador gana el juego si el jugador A toma el primer turno, asumiendo que ambos jugadores juegan de manera óptima.
Ejemplos:
Entrada: N = 2
Salida: el jugador A gana
Explicación:
el jugador A elige 1 y B no tiene más movimientos.
Entrada: N = 3
Salida: el jugador B gana
Explicación:
el jugador A elige 1, el jugador B elige 1 y A no tiene más movimientos.
Enfoque:
este problema mencionado anteriormente se puede resolver utilizando la programación dinámica.
- Tomaremos un DP que tiene 2 estados, es decir
N -> número actual a la izquierda
A -> valor booleano para decidir si es el turno del jugador A o no
- En cada estado, intentaremos encontrar todos los divisores de N e intentaremos encontrar el siguiente estado en el que el jugador actual está ganando. Para el jugador A, intentaremos encontrar el siguiente estado donde el valor devuelto sea verdadero, mientras que para el jugador B, intentaremos encontrar el siguiente estado donde el valor devuelto sea falso (ya que falso representa la pérdida del jugador A).
- Los casos base serán para N=1 donde siempre perderá el jugador A y N=2 donde siempre perderá el jugador B.
- Para encontrar la respuesta, solo necesitamos encontrar el valor de DP[ N ][ 1 ].
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for implementation of // Optimal Strategy for the Divisor // Game using Dynamic Programming #include <bits/stdc++.h> using namespace std; // Recursive function to find the winner bool divisorGame(int N, bool A, int dp[][2]) { // check if N=1 or N=3 then player B wins if (N == 1 or N == 3) return false; // check if N=2 then player A wins if (N == 2) return true; // check if current state already visited // then return the previously obtained ans if (dp[N][A] != -1) return dp[N][A]; // check if currently it is player A's turn // then initialise the ans to 0 int ans = (A == 1) ? 0 : 1; // Traversing across all the divisors of N // which are less than N for (int i = 1; i * i <= N; i++) { // check if current value of // i is a divisor of N if (N % i == 0) { // check if it is player A's turn // then we need at least one true if (A) ans |= divisorGame(N - i, 0, dp); // Else if it is player B's turn // then we need at least one false else ans &= divisorGame(N - i, 1, dp); } } // Return the current ans return dp[N][A] = ans; } // Driver code int main() { // initialise N int N = 3; int dp[N + 1][2]; memset(dp, -1, sizeof(dp)); if (divisorGame(N, 1, dp) == true) cout << "Player A wins"; else cout << "Player B wins"; return 0; }
Java
// Java program for implementation of // optimal strategy for the divisor // game using dynamic programming import java.util.*; class GFG { // Recursive function to find the winner static int divisorGame(int N, int A, int dp[][]) { // Check if N = 1 or N = 3 then player B wins if (N == 1 || N == 3) return 0; // Check if N = 2 then player A wins if (N == 2) return 1; // Check if current state already visited // then return the previously obtained ans if (dp[N][A] != -1) return dp[N][A]; // Check if currently it is player A's turn // then initialise the ans to 0 int ans = (A == 1) ? 0 : 1; // Traversing across all the divisors of N // which are less than N for (int i = 1; i * i <= N; i++) { // Check if current value of // i is a divisor of N if (N % i == 0) { // Check if it is player A's turn // then we need at least one true if (A == 1) ans |= divisorGame(N - i, 0, dp); // Else if it is player B's turn // then we need at least one false else ans &= divisorGame(N - i, 1, dp); } } // Return the current ans return dp[N][A] = ans; } // Driver code public static void main(String[] args) { // Initialise N int N = 3; int[][] dp = new int[N + 1][2]; for (int i = 0; i < N + 1; i++) { for (int j = 0; j < 2; j++) { dp[i][j] = -1; } } if (divisorGame(N, 1, dp) == 1) System.out.print("Player A wins"); else System.out.print("Player B wins"); } } // This code contributed by sapnasingh4991
Python3
# Python3 program for implementation of # Optimal Strategy for the Divisor # Game using Dynamic Programming from math import sqrt # Recursive function to find the winner def divisorGame(N,A,dp): # check if N=1 or N=3 then player B wins if (N == 1 or N == 3): return False # check if N=2 then player A wins if (N == 2): return True # check if current state already visited # then return the previously obtained ans if (dp[N][A] != -1): return dp[N][A] # check if currently it is player A's turn # then initialise the ans to 0 if(A == 1): ans = 0 else: ans = 1 # Traversing across all the divisors of N # which are less than N for i in range(1,int(sqrt(N))+1,1): # check if current value of # i is a divisor of N if (N % i == 0): # check if it is player A's turn # then we need at least one true if (A): ans |= divisorGame(N - i, 0, dp) # Else if it is player B's turn # then we need at least one false else: ans &= divisorGame(N - i, 1, dp) dp[N][A] = ans # Return the current ans return dp[N][A] # Driver code if __name__ == '__main__': # initialise N N = 3 dp = [[-1 for i in range(2)] for j in range(N+1)] if (divisorGame(N, 1, dp) == True): print("Player A wins") else: print("Player B wins") # This code is contributed by Surendra_Gangwar
C#
// C# program for implementation of // optimal strategy for the divisor // game using dynamic programming using System; class GFG { // Recursive function to find the winner static int divisorGame(int N, int A, int [,]dp) { // Check if N = 1 or N = 3 // then player B wins if (N == 1 || N == 3) return 0; // Check if N = 2 then player A wins if (N == 2) return 1; // Check if current state already visited // then return the previously obtained ans if (dp[N, A] != -1) return dp[N, A]; // Check if currently it is player A's turn // then initialise the ans to 0 int ans = (A == 1) ? 0 : 1; // Traversing across all the divisors of N // which are less than N for(int i = 1; i * i <= N; i++) { // Check if current value of // i is a divisor of N if (N % i == 0) { // Check if it is player A's turn // then we need at least one true if (A == 1) ans |= divisorGame(N - i, 0, dp); // Else if it is player B's turn // then we need at least one false else ans &= divisorGame(N - i, 1, dp); } } // Return the current ans return dp[N, A] = ans; } // Driver code public static void Main(String[] args) { // Initialise N int N = 3; int[,] dp = new int[N + 1, 2]; for(int i = 0; i < N + 1; i++) { for(int j = 0; j < 2; j++) { dp[i, j] = -1; } } if (divisorGame(N, 1, dp) == 1) { Console.Write("Player A wins"); } else { Console.Write("Player B wins"); } } } // This code is contributed by amal kumar choubey
Javascript
<script> // Javascript program for implementation of // Optimal Strategy for the Divisor // Game using Dynamic Programming // Recursive function to find the winner function divisorGame(N, A, dp) { // check if N=1 or N=3 then player B wins if (N == 1 || N == 3) return false; // check if N=2 then player A wins if (N == 2) return true; // check if current state already visited // then return the previously obtained ans if (dp[N][A] != -1) return dp[N][A]; // check if currently it is player A's turn // then initialise the ans to 0 let ans = (A == 1) ? 0 : 1; // Traversing across all the divisors of N // which are less than N for (let i = 1; i * i <= N; i++) { // check if current value of // i is a divisor of N if (N % i == 0) { // check if it is player A's turn // then we need at least one true if (A) ans |= divisorGame(N - i, 0, dp); // Else if it is player B's turn // then we need at least one false else ans &= divisorGame(N - i, 1, dp); } } // Return the current ans return dp[N][A] = ans; } // Driver code // initialise N let N = 3; let dp = []; for (let i = 0; i < N + 1; i++) { let temp = [-1] for (let j = 0; j < 2; j++) { temp.push([-1]) } dp.push(temp) } // memset(dp, -1, sizeof(dp)); if (divisorGame(N, 1, dp) == true) document.write("Player A wins"); else document.write("Player B wins"); // This code is contributed by gfgking </script>
Player B wins
Publicación traducida automáticamente
Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA