Diferencia máxima entre grupos de tamaño dos

Dada una array de un número par de elementos, forme grupos de 2 utilizando estos elementos de la array de modo que la diferencia entre el grupo con la suma más alta y el que tenga la suma más baja sea máxima.
Nota: Un elemento puede ser parte de un solo grupo y tiene que ser parte de al menos 1 grupo. 
Ejemplos: 
 

Input : arr[] = {1, 4, 9, 6}
Output : 10
Groups formed will be (1, 4) and (6, 9), 
the difference between highest sum group
(6, 9) i.e 15 and lowest sum group (1, 4)
i.e 5 is 10.


Input : arr[] = {6, 7, 1, 11}
Output : 11
Groups formed will be (1, 6) and (7, 11), 
the difference between highest sum group
(7, 11) i.e 18 and lowest sum group (1, 6)
i.e 7 is 11.

Enfoque simple: podemos resolver este problema haciendo todas las combinaciones posibles y verificando cada conjunto de diferencias de combinación entre el grupo con la suma más alta y con la suma más baja. Se formarían un total de n*(n-1)/2 de tales grupos (nC2). 
Complejidad de tiempo: O (n ^ 3), porque se necesitarán O (n ^ 2) para generar grupos y verificar contra cada grupo. Se necesitarán n iteraciones, por lo que en general toma O (n ^ 3) tiempo.
Enfoque eficiente: podemos utilizar el enfoque codicioso. Ordene toda la array y nuestro resultado es la suma de los dos últimos elementos menos la suma de los dos primeros elementos.
 

C++

// CPP program to find minimum difference
// between groups of highest and lowest
// sums.
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
ll CalculateMax(ll arr[], int n)
{
    // Sorting the whole array.
    sort(arr, arr + n);
    
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return abs(max_sum - min_sum);
}
 
// Driver code
int main()
{
    ll arr[] = { 6, 7, 1, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << CalculateMax(arr, n) << endl;
    return 0;
}

Java

// Java program to find minimum difference
// between groups of highest and lowest
// sums.
import java.util.Arrays;
import java.io.*;
 
class GFG {
static int  CalculateMax(int  arr[], int n)
{
    // Sorting the whole array.
    Arrays.sort(arr);
     
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return (Math.abs(max_sum - min_sum));
}
 
// Driver code
     
    public static void main (String[] args) {
 
    int arr[] = { 6, 7, 1, 11 };
    int n = arr.length;
    System.out.println (CalculateMax(arr, n));
    }
}

Python3

# Python 3 program to find minimum difference
# between groups of highest and lowest
def CalculateMax(arr, n):
 
    # Sorting the whole array.
    arr.sort()
    min_sum = arr[0] + arr[1]
    max_sum = arr[n - 1] + arr[n - 2]
    return abs(max_sum - min_sum)
 
# Driver code
arr = [6, 7, 1, 11]
n = len(arr)
print(CalculateMax(arr, n))
 
# This code is contributed
# by Shrikant13

C#

// C# program to find minimum difference
// between groups of highest and lowest
// sums.
using System;
 
public class GFG{
 
static int CalculateMax(int []arr, int n)
{
    // Sorting the whole array.
    Array.Sort(arr);
     
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return (Math.Abs(max_sum - min_sum));
}
 
// Driver code
     
    static public void Main (){
    int []arr = { 6, 7, 1, 11 };
    int n = arr.Length;
    Console.WriteLine(CalculateMax(arr, n));
    }
//This code is contributed by Sachin.   
}

PHP

<?php
// PHP program to find minimum
// difference between groups of
// highest and lowest sums.
function CalculateMax($arr, $n)
{
    // Sorting the whole array.
    sort($arr);
     
    $min_sum = $arr[0] +
               $arr[1];
    $max_sum = $arr[$n - 1] +
               $arr[$n - 2];
 
    return abs($max_sum -
               $min_sum);
}
 
// Driver code
$arr = array (6, 7, 1, 11 );
$n = sizeof($arr);
echo CalculateMax($arr, $n), "\n" ;
 
// This code is contributed by ajit
?>

Javascript

<script>
 
    // Javascript program to
    // find minimum difference
    // between groups of highest and lowest
    // sums.
     
    function CalculateMax(arr, n)
    {
        // Sorting the whole array.
        arr.sort(function(a, b){return a - b});
 
        let min_sum = arr[0] + arr[1];
        let max_sum = arr[n-1] + arr[n-2];
 
        return (Math.abs(max_sum - min_sum));
    }
     
    let arr = [ 6, 7, 1, 11 ];
    let n = arr.length;
    document.write(CalculateMax(arr, n));
         
</script>
Producción

11

Producción:  

11

Complejidad de tiempo: O (n * log n)
Optimización adicional: 
en lugar de ordenar, podemos encontrar un máximo de dos y un mínimo de dos en tiempo lineal y reducir la complejidad de tiempo a O(n). 
 

C++

// CPP program to find minimum difference
// between groups of highest and lowest
// sums.
#include <bits/stdc++.h>
using namespace std;
 
int CalculateMax(int arr[], int n)
{
     
    int first_min = INT_MAX;
    int second_min = INT_MAX;
    for(int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] < first_min)
        {
            second_min = first_min;
            first_min = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] < second_min && arr[i] != first_min)
            second_min = arr[i];
    }
     
    int first_max = INT_MIN;
    int second_max = INT_MIN;
    for (int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] > first_max)
        {
            second_max = first_max;
            first_max = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] > second_max && arr[i] != first_max)
            second_max = arr[i];
    }
     
    return abs(first_max+second_max-first_min-second_min);
     
}
 
// Driver code
int main()
{
    int arr[] = { 6, 7, 1, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << CalculateMax(arr, n) << endl;
    return 0;
}
 
// This code is contributed by Pushpesh Raj

Java

// Java program to find minimum difference
// between groups of highest and lowest
// sums.
import java.util.Arrays;
import java.io.*;
 
class GFG {
static int CalculateMax(int arr[], int n)
{
    int first_min = Integer.MAX_VALUE;
    int second_min = Integer.MAX_VALUE;
    for(int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] < first_min)
        {
            second_min = first_min;
            first_min = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] < second_min && arr[i] != first_min)
            second_min = arr[i];
    }
     
    int first_max = Integer.MIN_VALUE;
    int second_max = Integer.MIN_VALUE;
    for (int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] > first_max)
        {
            second_max = first_max;
            first_max = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] > second_max && arr[i] != first_max)
            second_max = arr[i];
    }
     
    return Math.abs(first_max+second_max-first_min-second_min);
}
 
// Driver code
     
    public static void main (String[] args) {
 
    int arr[] = { 6, 7, 1, 11 };
    int n = arr.length;
    System.out.println (CalculateMax(arr, n));
    }
}

Python3

# Python 3 program to find minimum difference
# between groups of highest and lowest
def CalculateMax(arr, n):
 
    # maxint constant
    first_min = 99999
    second_min = 99999
 
    for i in range(n):
        if arr[i] < first_min:
            second_min = first_min
            first_min = arr[i]
        # If arr[i] is in between first and second
        # then update second
 
        elif arr[i] < second_min & arr[i] != first_min:
            second_min = arr[i]
 
    # maxint constant
    first_max = -99999
    second_max = -99999
 
    for i in range(n):
        if arr[i] > first_max:
            second_max = first_max
            first_max = arr[i]
        # If arr[i] is in between first and second
        # then update second
 
        elif arr[i] > second_max & arr[i] != first_max:
            second_max = arr[i]
 
    return abs(first_max+second_max-first_min-second_min)
 
 
# Driver code
arr = [6, 7, 1, 11]
n = len(arr)
print(CalculateMax(arr, n))
 
# This code is contributed Aarti_Rathi

C#

// C# program to find minimum difference
// between groups of highest and lowest
// sums.
using System;
 
public class GFG{
 
static int CalculateMax(int []arr, int n)
{
    int first_min = int.MaxValue;
    int second_min = int.MaxValue;
    for(int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] < first_min)
        {
            second_min = first_min;
            first_min = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] < second_min && arr[i] != first_min)
            second_min = arr[i];
    }
     
    int first_max = int.MinValue;
    int second_max = int.MinValue;
    for (int i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] > first_max)
        {
            second_max = first_max;
            first_max = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] > second_max && arr[i] != first_max)
            second_max = arr[i];
    }
     
    return Math.Abs(first_max+second_max-first_min-second_min);
}
 
// Driver code
     
    static public void Main (){
    int []arr = { 6, 7, 1, 11 };
    int n = arr.Length;
    Console.WriteLine(CalculateMax(arr, n));
    }
}

Javascript

<script>
 
    // Javascript program to
    // find minimum difference
    // between groups of highest and lowest
    // sums.
     
    function CalculateMax(arr, n)
    {
    let first_min = Number.MAX_VALUE;
    let second_min = Number.MAX_VALUE;
    for(let i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] < first_min)
        {
            second_min = first_min;
            first_min = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] < second_min && arr[i] != first_min)
            second_min = arr[i];
    }
     
    let first_max = Number.MIN_VALUE;
    let second_max = Number.MIN_VALUE;
    for (let i = 0; i < n ; i ++)
    {
        /* If current element is smaller than first
        then update both first and second */
        if (arr[i] > first_max)
        {
            second_max = first_max;
            first_max = arr[i];
        }
  
        /* If arr[i] is in between first and second
        then update second */
        else if (arr[i] > second_max && arr[i] != first_max)
            second_max = arr[i];
    }
     
    return Math.abs(first_max+second_max-first_min-second_min);
    }
     
    let arr = [ 6, 7, 1, 11 ];
    let n = arr.length;
    document.write(CalculateMax(arr, n));
         
</script>
Producción

11

Complejidad de Tiempo : O(N)
Espacio Auxiliar : O(1)

Publicación traducida automáticamente

Artículo escrito por akash1295 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *