Dada una array 2D arr[][] , donde cada fila tiene la forma {inicio, fin} que representa los puntos inicial y final de cada segmento de línea en el eje X. En un solo paso, seleccione un punto en el eje X y elimine todos los segmentos de línea que pasan por ese punto. La tarea es encontrar el número mínimo de dichos puntos que deben seleccionarse para eliminar todos los segmentos de línea de la array .
Ejemplos:
Entrada: arr[][]= { {9, 15}, {3, 8}, {1, 6}, {7, 12}, {5,10} }
Salida: 2
Explicación:
Seleccione el punto arr[2 ][1](= (6, 0) en el eje X y elimine los segmentos de línea segundo(= arr[1]), tercero(= arr[2]) y quinto(= arr[4]).
Seleccione el punto arr[3][1](= (12, 0)) en el eje X y elimine el primer(=arr[0]) y el cuarto(=arr[3]) segmentos de línea
. cuenta es 2.Entrada: arr[][]={ {1, 4}, {5, 7}, {9, 13} }
Salida: 3
Planteamiento: El problema se puede resolver usando la técnica Greedy . Siga los pasos a continuación para resolver el problema:
- Inicialice una variable, diga cntSteps para contar el número total de pasos necesarios para eliminar todos los segmentos de línea.
- Ordene la array arr[][] según los puntos finales de los segmentos de línea .
- Inicialice una variable, diga Points = arr[0][1] para almacenar los puntos del eje X.
- Recorra la array y verifique si el valor de arr[i][0] es mayor que Puntos o no. Si se determina que es cierto, incremente el valor cntSteps en 1 y actualice el valor de Points = arr[i][1] .
- Finalmente, imprima el valor de cntSteps .
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Comparator function bool comp(vector<int> &x, vector<int> y) { return x[1] < y[1]; } // Function to count the minimum number of // steps required to delete all the segments int cntMinSteps(vector<vector<int> > &arr, int N) { // Stores count of steps required // to delete all the line segments int cntSteps = 1; // Sort the array based on end points // of line segments sort(arr.begin(), arr.end(), comp); // Stores point on X-axis int Points = arr[0][1]; // Traverse the array for(int i = 0; i < N; i++) { // If arr[1][0] is // greater than Points if(arr[i][0] > Points) { // Update cntSteps cntSteps++; // Update Points Points = arr[i][1]; } } return cntSteps; } // Driver Code int main() { vector<vector<int> > arr = { { 9, 15 }, { 3, 8 }, { 1, 6 }, { 7, 12 }, { 5, 10 } }; int N = arr.size(); cout<< cntMinSteps(arr, N); return 0; }
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Function to sort by column public static void sortbyColumn(int arr[][], int col) { // Using built-in sort function Arrays.sort Arrays.sort(arr, new Comparator<int[]>() { @Override // Compare values according to columns public int compare(final int[] entry1, final int[] entry2) { // To sort in descending order revert // the '>' Operator if (entry1[col] > entry2[col]) return 1; else return -1; } }); // End of function call sort(). } // Function to count the minimum number of // steps required to delete all the segments static int cntMinSteps(int[][] arr, int N) { // Stores count of steps required // to delete all the line segments int cntSteps = 1; // Sort the array based on end points // of line segments sortbyColumn(arr, 1); // Stores point on X-axis int Points = arr[0][1]; // Traverse the array for(int i = 0; i < N; i++) { // If arr[1][0] is // greater than Points if(arr[i][0] > Points) { // Update cntSteps cntSteps++; // Update Points Points = arr[i][1]; } } return cntSteps; } // Driver Code public static void main(String[] args) { int[][] arr = { { 9, 15 }, { 3, 8 }, { 1, 6 }, { 7, 12 }, { 5, 10 } }; int N = arr.length; System.out.print(cntMinSteps(arr, N)); } } // This code is contributed by shikhasingrajput
C#
// C# program to implement // the above approach class GFG { // A C# Function to sort the array by specified column. static public int[,] Sort_By_Column(int [,] array, int [,] sort_directive) { // number of rows iside array int array_rows = array.GetLength(0); // number of columns inside array int array_columns = array.Length/array_rows; // number of columns to be sorted int sort_directive_columns = sort_directive.GetLength(0); // for(int i=0;i<array_rows-1;i++) { for(int j=i+1;j<array_rows;j++) { for(int c=0;c<sort_directive_columns;c++) { // // sort array values in descending sort order // if(sort_directive[c,1]==-1 && array[i,sort_directive[c,0]].CompareTo(array[j,sort_directive[c,0]])<0) { // // if values are in ascending sort order // swap values // for(int d=0;d<array_columns;d++) { int h = array[j,d]; array[j,d]=array[i,d]; array[i,d]=h; } break; } // // if values are in correct sort order break // else if(sort_directive[c,1]==-1 && array[i,sort_directive[c,0]].CompareTo(array[j,sort_directive[c,0]])>0) break; // // sort array values in ascending sort order // else if(sort_directive[c,1]==1 && array[i,sort_directive[c,0]].CompareTo(array[j,sort_directive[c,0]])>0) { // // if values are in descending sort order // swap values // for(int d=0;d<array_columns;d++) { int h = array[j,d]; array[j,d]=array[i,d]; array[i,d]=h; } break; } // // if values are in correct sort order break // else if(sort_directive[c,1]==1 && array[i,sort_directive[c,0]].CompareTo(array[j,sort_directive[c,0]])<0) break; // // if values are equal // select next sort directive // } } } return array; } // Function to count the minimum number of // steps required to delete all the segments static public int cntMinSteps(int [,]arr, int N) { // Stores count of steps required // to delete all the line segments int cntSteps = 1; // Sort the array based on end points // of line segments int [,] SORT_DIRECTIVE=new int[1,2]{ {1, 1} }; Sort_By_Column(arr, SORT_DIRECTIVE); // Stores point on X-axis int Points = arr[0,1]; // Traverse the array for (int i = 0; i < N; i++) { // If arr[1][0] is // greater than Points if (arr[i,0] > Points) { // Update cntSteps cntSteps = cntSteps + 1; // Update Points Points = arr[i,1]; } } return cntSteps; } // Driver code static void Main() { int[,] arr = new int[,]{ { 9, 15 }, { 3, 8 }, { 1, 6 }, { 7, 12 }, { 5, 10 } }; int N = arr.GetLength(0); System.Console.WriteLine(cntMinSteps(arr, N)); } } // The code is contributed by Gautam goel (gautamgoel962)
Python3
# Python3 program to implement # the above approach # Comparator function def comp(x, y): return x[1] < y[1] # Function to count the # minimum number of steps # required to delete all # the segments def cntMinSteps(arr, N): # Stores count of steps # required to delete all # the line segments cntSteps = 1 # Sort the array based # on end points of line # segments arr.sort(reverse = False) # Stores point on X-axis Points = arr[0][1] # Traverse the array for i in range(N): # If arr[1][0] is # greater than Points if(arr[i][0] > Points): # Update cntSteps cntSteps += 1 # Update Points Points = arr[i][1] return cntSteps # Driver Code if __name__ == '__main__': arr = [[9, 15], [3, 8], [1, 6], [7, 12], [5, 10]] N = len(arr) print(cntMinSteps(arr, N)) # This code is contributed by bgangwar59
Javascript
<script> // JavaScript program to implement // the above approach // Comparator function function comp(x, y){ return x[1] - y[1] } // Function to count the // minimum number of steps // required to delete all // the segments function cntMinSteps(arr, N){ // Stores count of steps // required to delete all // the line segments let cntSteps = 1 // Sort the array based // on end points of line // segments arr.sort(comp) // Stores point on X-axis let Points = arr[0][1] // Traverse the array for(let i=0;i<N;i++){ // If arr[1][0] is // greater than Points if(arr[i][0] > Points){ // Update cntSteps cntSteps += 1 // Update Points Points = arr[i][1] } } return cntSteps } // Driver Code let arr = [[9, 15], [3, 8], [1, 6], [7, 12], [5, 10]] let N = arr.length document.write(cntMinSteps(arr, N)) // This code is contributed by shinjanpatra </script>
2
Complejidad de tiempo: O(N * log(N))
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por lavishgarg26 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA