Dadas N piezas de tablero de ajedrez, todas son ‘blancas’ y una serie de consultas Q. Hay dos tipos de consultas:
- Actualización: índices dados de un rango [L, R]. Pinte todas las piezas con su respectivo color opuesto entre L y R (es decir, las piezas blancas deben pintarse con color negro y las piezas negras deben pintarse con color blanco).
- Obtener: Índices dados de un rango [L, R]. Encuentra el número de piezas negras entre L y R.
Representemos las piezas ‘blancas’ con ‘0’ y las piezas ‘negras’ con ‘1’.
Requisitos previos : Segmentar árboles | Propagación perezosa
Ejemplos:
Input : N = 4, Q = 5 Get : L = 0, R = 3 Update : L = 1, R = 2 Get : L = 0, R = 1 Update : L = 0, R = 3 Get : L = 0, R = 3 Output : 0 1 2
Explicación:
Consulta 1: A[] = { 0, 0, 0, 0 } Dado que inicialmente todas las piezas son blancas, el número de piezas negras será cero.
Consulta2: A[] = { 0, 1, 1, 0 }
Consulta3: Número de piezas negras en [0, 1] = 1
Consulta4: Cambiar el color a su color opuesto en [0, 3], A[] = { 1, 0, 0, 1 }
Consulta5: Número de piezas negras en [0, 3] = 2
Enfoque ingenuo:
Actualizar (L, R): iterar sobre el subarreglo de L a R y cambiar el color de todas las piezas (es decir, cambiar 0 a 1 y 1 a 0)
Obtener (L, R): para obtener el número de negro piezas, simplemente cuente el número de unidades en el rango [L, R].
Tanto la función update como getBlackPieces() tendrán una complejidad de tiempo O(N). La complejidad del tiempo en el peor de los casos es O(Q * N) donde Q es el número de consultas y N es el número de piezas del tablero de ajedrez.
Enfoque eficiente:
un método eficiente para resolver este problema es usar árboles de segmentos que pueden reducir la complejidad del tiempo de actualización y las funciones getBlackPieces a O (LogN).
Estructura de construcción : cada Node de hoja del árbol de segmentos contendrá 0 o 1 según el color de la pieza (es decir, si la pieza es negra, el Node contendrá 1, de lo contrario, 0). Los Nodes internos contendrán la suma de unos o el número de piezas negras de su hijo izquierdo y derecho. Por lo tanto, el Node raíz nos dará el número total de piezas negras en toda la array [0..N-1]
Estructura de actualización: las actualizaciones de puntos toman tiempo O (Log (N)), pero cuando hay actualizaciones de rango, optimice las actualizaciones usando Lazy Propagation . A continuación se muestra el método de actualización modificado.
UpdateRange(ss, se) 1. If current node's range lies completely in update query range. ...a) Value of current node becomes the difference of total count of black pieces in the subtree of current node and current value of node, i.e. tree[curNode] = (se - ss + 1) - tree[curNode] ...b) Provide the lazy value to its children by setting lazy[2*curNode] = 1 - lazy[2*curNode] lazy[2*curNode + 1] = 1 - lazy[2*curNode + 1] 2. If the current node's lazy value is not zero, first update it and provide lazy value to children. 3. Partial Overlap of current node's range with query range ...a) Recurse for left and right child ...b) Combine the results of step (a)
Estructura de consulta: la estructura de consulta también cambiará un poco de la misma manera que la estructura de actualización al verificar las actualizaciones pendientes y actualizarlas para obtener el resultado de consulta correcto.
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ code for queries on chessboard #include <bits/stdc++.h> using namespace std; // A utility function to get the // middle index from corner indexes. int getMid(int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the sum of values in given range of the array. The following are parameters for this function. si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., tree[si] qs & qe --> Starting and ending indexes of query range */ int getSumUtil(int* tree, int* lazy, int ss, int se, int qs, int qe, int si) { // If lazy flag is set for current node // of segment tree, then there are some // pending updates. So we need to make // sure that the pending updates are done // before processing the sub sum query if (lazy[si] != 0) { // Make pending updates to this node. // Note that this node represents // sum of elements in arr[ss..se] tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node // because if it is leaf node then // we cannot go further if (ss != se) { // Since we are not yet updating // children os si, we need to set // lazy values for the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // unset the lazy value for current // node as it has been updated lazy[si] = 0; } // Out of range if (ss > se || ss > qe || se < qs) return 0; // At this point we are sure that pending // lazy updates are done for current node. // So we can return value (same as it was // for query in our previous post) // If this segment lies in range if (ss >= qs && se <= qe) return tree[si]; // If a part of this segment overlaps // with the given range int mid = (ss + se) / 2; return getSumUtil(tree, lazy, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(tree, lazy, mid + 1, se, qs, qe, 2 * si + 2); } // Return sum of elements in range from index // qs (query start) to qe (query end). It // mainly uses getSumUtil() int getSum(int* tree, int* lazy, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { printf("Invalid Input"); return -1; } return getSumUtil(tree, lazy, 0, n - 1, qs, qe, 0); } /* si -> index of current node in segment tree ss and se -> Starting and ending indexes of elements for which current nodes stores sum. us and ue -> starting and ending indexes of update query */ void updateRangeUtil(int* tree, int* lazy, int si, int ss, int se, int us, int ue) { // If lazy value is non-zero for current node // of segment tree, then there are some // pending updates. So we need to make sure that // the pending updates are done before making // new updates. Because this value may be used by // parent after recursive calls (See last line // of this function) if (lazy[si] != 0) { // Make pending updates using value stored // in lazy nodes tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node because if // it is leaf node then we cannot go further if (ss != se) { // We can postpone updating children // we don't need their new values now. // Since we are not yet updating children // of si, we need to set lazy flags for // the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // Set the lazy value for current node // as 0 as it has been updated lazy[si] = 0; } // out of range if (ss > se || ss > ue || se < us) return; // Current segment is fully in range if (ss >= us && se <= ue) { // Add the difference to current node tree[si] = (se - ss + 1) - tree[si]; // same logic for checking leaf // node or not if (ss != se) { // This is where we store values in // lazy nodes, rather than updating // the segment tree itself. Since we // don't need these updated values now // we postpone updates by storing // values in lazy[] lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } return; } // If not completely in rang, but overlaps, // recur for children int mid = (ss + se) / 2; updateRangeUtil(tree, lazy, si * 2 + 1, ss, mid, us, ue); updateRangeUtil(tree, lazy, si * 2 + 2, mid + 1, se, us, ue); // And use the result of children calls // to update this node tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; } // Function to update a range of values // in segment tree /* us and eu -> starting and ending indexes of update query ue -> ending index of update query, diff -> which we need to add in the range us to ue */ void updateRange(int* tree, int* lazy, int n, int us, int ue) { updateRangeUtil(tree, lazy, 0, 0, n - 1, us, ue); } // A recursive function that constructs // Segment Tree for array[ss..se]. si is // index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int* tree, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { tree[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the sum of values in this node int mid = getMid(ss, se); tree[si] = constructSTUtil(arr, ss, mid, tree, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, tree, si * 2 + 2); return tree[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int* constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = (int)(ceil(log2(n))); // Maximum size of segment tree int max_size = 2 * (int)pow(2, x) - 1; // Allocate memory int* tree = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, tree, 0); // Return the constructed segment tree return tree; } /* Function to construct lazy array for segment tree. This function allocates memory for lazy array */ int* constructLazy(int arr[], int n) { // Allocate memory for lazy array // Height of lazy array int x = (int)(ceil(log2(n))); // Maximum size of lazy array int max_size = 2 * (int)pow(2, x) - 1; // Allocate memory int* lazy = new int[max_size]; // Return the lazy array return lazy; } // Driver program to test above functions int main() { // Initialize the array to zero // since all pieces are white int arr[] = { 0, 0, 0, 0 }; int n = sizeof(arr) / sizeof(arr[0]); // Build segment tree from given array int* tree = constructST(arr, n); // Allocate memory for Lazy array int* lazy = constructLazy(arr, n); // Print number of black pieces // from index 0 to 3 cout << "Black Pieces in given range = " << getSum(tree, lazy, n, 0, 3) << endl; // UpdateRange: Change color of pieces // from index 1 to 2 updateRange(tree, lazy, n, 1, 2); // Print number of black pieces // from index 0 to 1 cout << "Black Pieces in given range = " << getSum(tree, lazy, n, 0, 1) << endl; // UpdateRange: Change color of // pieces from index 0 to 3 updateRange(tree, lazy, n, 0, 3); // Print number of black pieces // from index 0 to 3 cout << "Black Pieces in given range = " << getSum(tree, lazy, n, 0, 3) << endl; return 0; }
Java
// Java implementation of the approach import java.io.*; import java.util.*; class GFG { // A utility function to get the // middle index from corner indexes. static int getMid(int s, int e) { return s + (e - s) / 2; } /* * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * si --> Index of current node in * the segment tree. Initially * 0 is passed as root is always * at index 0 * ss & se --> Starting and ending * indexes of the segment * represented by current * node, i.e., tree[si] * qs & qe --> Starting and ending * indexes of query range */ static int getSumUtil(int[] tree, int[] lazy, int ss, int se, int qs, int qe, int si) { // If lazy flag is set for current node // of segment tree, then there are some // pending updates. So we need to make // sure that the pending updates are done // before processing the sub sum query if (lazy[si] != 0) { // Make pending updates to this node. // Note that this node represents // sum of elements in arr[ss..se] tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node // because if it is leaf node then // we cannot go further if (ss != se) { // Since we are not yet updating // children os si, we need to set // lazy values for the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // unset the lazy value for current // node as it has been updated lazy[si] = 0; } // Out of range if (ss > se || ss > qe || se < qs) return 0; // At this point we are sure that pending // lazy updates are done for current node. // So we can return value (same as it was // for query in our previous post) // If this segment lies in range if (ss >= qs && se <= qe) return tree[si]; // If a part of this segment overlaps // with the given range int mid = (ss + se) / 2; return getSumUtil(tree, lazy, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(tree, lazy, mid + 1, se, qs, qe, 2 * si + 2); } // Return sum of elements in range from index // qs (query start) to qe (query end). It // mainly uses getSumUtil() static int getSum(int[] tree, int[] lazy, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { System.out.println("Invalid Input"); return -1; } return getSumUtil(tree, lazy, 0, n - 1, qs, qe, 0); } /* * si -> index of current node in segment tree * ss and se -> Starting and ending indexes of * elements for which current * nodes stores sum. * us and ue -> starting and ending indexes of * update query */ static void updateRangeUtil(int[] tree, int[] lazy, int si, int ss, int se, int us, int ue) { // If lazy value is non-zero for current node // of segment tree, then there are some // pending updates. So we need to make sure that // the pending updates are done before making // new updates. Because this value may be used by // parent after recursive calls (See last line // of this function) if (lazy[si] != 0) { // Make pending updates using value stored // in lazy nodes tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node because if // it is leaf node then we cannot go further if (ss != se) { // We can postpone updating children // we don't need their new values now. // Since we are not yet updating children // of si, we need to set lazy flags for // the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // Set the lazy value for current node // as 0 as it has been updated lazy[si] = 0; } // out of range if (ss > se || ss > ue || se < us) return; // Current segment is fully in range if (ss >= us && se <= ue) { // Add the difference to current node tree[si] = (se - ss + 1) - tree[si]; // same logic for checking leaf // node or not if (ss != se) { // This is where we store values in // lazy nodes, rather than updating // the segment tree itself. Since we // don't need these updated values now // we postpone updates by storing // values in lazy[] lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } return; } // If not completely in rang, but overlaps, // recur for children int mid = (ss + se) / 2; updateRangeUtil(tree, lazy, si * 2 + 1, ss, mid, us, ue); updateRangeUtil(tree, lazy, si * 2 + 2, mid + 1, se, us, ue); // And use the result of children calls // to update this node tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; } // Function to update a range of values // in segment tree /* * us and eu -> starting and ending indexes * of update query * ue -> ending index of update query * diff -> which we need to add in the range * us to ue */ static void updateRange(int[] tree, int[] lazy, int n, int us, int ue) { updateRangeUtil(tree, lazy, 0, 0, n - 1, us, ue); } // A recursive function that constructs // Segment Tree for array[ss..se]. si is // index of current node in segment tree st static int constructSTUtil(int arr[], int ss, int se, int[] tree, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { tree[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the sum of values in this node int mid = getMid(ss, se); tree[si] = constructSTUtil(arr, ss, mid, tree, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, tree, si * 2 + 2); return tree[si]; } /* * Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ static int[] constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = (int) Math.ceil(Math.log(n) / Math.log(2)); // Maximum size of segment tree int max_size = 2 * (int) Math.pow(2, x) - 1; // Allocate memory int[] tree = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, tree, 0); // Return the constructed segment tree return tree; } /* * Function to construct lazy array for segment tree. This function allocates * memory for lazy array */ static int[] constructLazy(int arr[], int n) { // Allocate memory for lazy array // Height of lazy array int x = (int) Math.ceil(Math.log(n) / Math.log(2)); // Maximum size of lazy array int max_size = 2 * (int) Math.pow(2, x) - 1; // Allocate memory int[] lazy = new int[max_size]; // Return the lazy array return lazy; } // Driver Code public static void main(String[] args) { // Initialize the array to zero // since all pieces are white int[] arr = {0, 0, 0, 0}; int n = arr.length; // Build segment tree from given array int[] tree = constructST(arr, n); // Allocate memory for Lazy array int[] lazy = constructLazy(arr, n); // Print number of black pieces // from index 0 to 3 System.out.println("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3)); // UpdateRange: Change color of pieces // from index 1 to 2 updateRange(tree, lazy, n, 1, 2); // Print number of black pieces // from index 0 to 1 System.out.println("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 1)); // UpdateRange: Change color of // pieces from index 0 to 3 updateRange(tree, lazy, n, 0, 3); // Print number of black pieces // from index 0 to 3 System.out.println("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3)); } } // This code is contributed by // sanjeev2552
Python3
# Python3 code for queries on chessboard import math # A utility function to get the # middle index from corner indexes. def getMid(s, e): return s + int((e - s) / 2) """ * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * si --> Index of current node in * the segment tree. Initially * 0 is passed as root is always * at index 0 * ss & se --> Starting and ending * indexes of the segment * represented by current * node, i.e., tree[si] * qs & qe --> Starting and ending * indexes of query range """ def getSumUtil(tree, lazy, ss, se, qs, qe, si): # If lazy flag is set for current node # of segment tree, then there are some # pending updates. So we need to make # sure that the pending updates are done # before processing the sub sum query if (lazy[si] != 0): # Make pending updates to this node. # Note that this node represents # sum of elements in arr[ss..se] tree[si] = (se - ss + 1) - tree[si] # Checking if it is not leaf node # because if it is leaf node then # we cannot go further if (ss != se): # Since we are not yet updating # children os si, we need to set # lazy values for the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1] lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2] # unset the lazy value for current # node as it has been updated lazy[si] = 0 # Out of range if (ss > se or ss > qe or se < qs): return 0 # At this point we are sure that pending # lazy updates are done for current node. # So we can return value (same as it was # for query in our previous post) # If this segment lies in range if (ss >= qs and se <= qe): return tree[si] # If a part of this segment overlaps # with the given range mid = int((ss + se) / 2) return(getSumUtil(tree, lazy, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(tree, lazy, mid + 1, se, qs, qe, 2 * si + 2)) # Return sum of elements in range from index # qs (query start) to qe (query end). It # mainly uses getSumUtil() def getSum(tree, lazy, n, qs, qe): # Check for erroneous input values if (qs < 0 or qe > n - 1 or qs > qe): print("Invalid Input") return -1 return getSumUtil(tree, lazy, 0, n - 1, qs, qe, 0) """ * si -> index of current node in segment tree * ss and se -> Starting and ending indexes of * elements for which current * nodes stores sum. * us and ue -> starting and ending indexes of * update query """ def updateRangeUtil(tree, lazy, si, ss, se, us, ue): # If lazy value is non-zero for current node # of segment tree, then there are some # pending updates. So we need to make sure that # the pending updates are done before making # new updates. Because this value may be used by # parent after recursive calls (See last line # of this function) if (lazy[si] != 0): # Make pending updates using value stored # in lazy nodes tree[si] = (se - ss + 1) - tree[si] # Checking if it is not leaf node because if # it is leaf node then we cannot go further if (ss != se): # We can postpone updating children # we don't need their new values now. # Since we are not yet updating children # of si, we need to set lazy flags for # the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1] lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2] # Set the lazy value for current node # as 0 as it has been updated lazy[si] = 0 # Out of range if (ss > se or ss > ue or se < us): return # Current segment is fully in range if (ss >= us and se <= ue): # Add the difference to current node tree[si] = (se - ss + 1) - tree[si] # Same logic for checking leaf # node or not if (ss != se): # This is where we store values in # lazy nodes, rather than updating # the segment tree itself. Since we # don't need these updated values now # we postpone updates by storing # values in lazy[] lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1] lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2] return # If not completely in rang, but overlaps, # recur for children mid = int((ss + se) / 2) updateRangeUtil(tree, lazy, si * 2 + 1, ss, mid, us, ue) updateRangeUtil(tree, lazy, si * 2 + 2, mid + 1, se, us, ue) # And use the result of children calls # to update this node tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2] # Function to update a range of values # in segment tree """ * us and eu -> starting and ending indexes * of update query * ue -> ending index of update query * diff -> which we need to add in the range * us to ue """ def updateRange(tree, lazy, n, us, ue): updateRangeUtil(tree, lazy, 0, 0, n - 1, us, ue) # A recursive function that constructs # Segment Tree for array[ss..se]. si is # index of current node in segment tree st def constructSTUtil(arr, ss, se, tree, si): # If there is one element in array, store # it in current node of segment tree and return if (ss == se): tree[si] = arr[ss] return arr[ss] # If there are more than one elements, then # recur for left and right subtrees and # store the sum of values in this node mid = getMid(ss, se) tree[si] = (constructSTUtil(arr, ss, mid, tree, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, tree, si * 2 + 2)) return tree[si] """ * Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory """ def constructST(arr, n): # Allocate memory for segment tree # Height of segment tree x = int(math.ceil(math.log(n) / math.log(2))) # Maximum size of segment tree max_size = 2 * int(math.pow(2, x)) - 1 # Allocate memory tree = [0]*max_size # Fill the allocated memory st constructSTUtil(arr, 0, n - 1, tree, 0) # Return the constructed segment tree return tree """ Function to construct lazy array for segment tree. This function allocates memory for lazy array """ def constructLazy(arr, n): # Allocate memory for lazy array # Height of lazy array x = int(math.ceil(math.log(n) / math.log(2))) # Maximum size of lazy array max_size = 2 * int(math.pow(2, x)) - 1 # Allocate memory lazy = [0]*max_size # Return the lazy array return lazy # Driver code # Initialize the array to zero # since all pieces are white arr = [ 0, 0, 0, 0 ] n = len(arr) # Build segment tree from given array tree = constructST(arr, n) # Allocate memory for Lazy array lazy = constructLazy(arr, n) # Print number of black pieces # from index 0 to 3 print("Black Pieces in given range =", getSum(tree, lazy, n, 0, 3)) # UpdateRange: Change color of pieces # from index 1 to 2 updateRange(tree, lazy, n, 1, 2) # Print number of black pieces # from index 0 to 1 print("Black Pieces in given range =", getSum(tree, lazy, n, 0, 1)) # UpdateRange: Change color of # pieces from index 0 to 3 updateRange(tree, lazy, n, 0, 3) # Print number of black pieces # from index 0 to 3 print("Black Pieces in given range =", getSum(tree, lazy, n, 0, 3)) # This code is contributed by suresh07
C#
// C# implementation of the approach using System; class GFG { // A utility function to get the // middle index from corner indexes. static int getMid(int s, int e) { return s + (e - s) / 2; } /* * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * si --> Index of current node in * the segment tree. Initially * 0 is passed as root is always * at index 0 * ss & se --> Starting and ending * indexes of the segment * represented by current * node, i.e., tree[si] * qs & qe --> Starting and ending * indexes of query range */ static int getSumUtil(int[] tree, int[] lazy, int ss, int se, int qs, int qe, int si) { // If lazy flag is set for current node // of segment tree, then there are some // pending updates. So we need to make // sure that the pending updates are done // before processing the sub sum query if (lazy[si] != 0) { // Make pending updates to this node. // Note that this node represents // sum of elements in arr[ss..se] tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node // because if it is leaf node then // we cannot go further if (ss != se) { // Since we are not yet updating // children os si, we need to set // lazy values for the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // unset the lazy value for current // node as it has been updated lazy[si] = 0; } // Out of range if (ss > se || ss > qe || se < qs) return 0; // At this point we are sure that pending // lazy updates are done for current node. // So we can return value (same as it was // for query in our previous post) // If this segment lies in range if (ss >= qs && se <= qe) return tree[si]; // If a part of this segment overlaps // with the given range int mid = (ss + se) / 2; return getSumUtil(tree, lazy, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(tree, lazy, mid + 1, se, qs, qe, 2 * si + 2); } // Return sum of elements in range from index // qs (query start) to qe (query end). It // mainly uses getSumUtil() static int getSum(int[] tree, int[] lazy, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { Console.WriteLine("Invalid Input"); return -1; } return getSumUtil(tree, lazy, 0, n - 1, qs, qe, 0); } /* * si -> index of current node in segment tree * ss and se -> Starting and ending indexes of * elements for which current * nodes stores sum. * us and ue -> starting and ending indexes of * update query */ static void updateRangeUtil(int[] tree, int[] lazy, int si, int ss, int se, int us, int ue) { // If lazy value is non-zero for current node // of segment tree, then there are some // pending updates. So we need to make sure that // the pending updates are done before making // new updates. Because this value may be used by // parent after recursive calls (See last line // of this function) if (lazy[si] != 0) { // Make pending updates using value stored // in lazy nodes tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node because if // it is leaf node then we cannot go further if (ss != se) { // We can postpone updating children // we don't need their new values now. // Since we are not yet updating children // of si, we need to set lazy flags for // the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // Set the lazy value for current node // as 0 as it has been updated lazy[si] = 0; } // out of range if (ss > se || ss > ue || se < us) return; // Current segment is fully in range if (ss >= us && se <= ue) { // Add the difference to current node tree[si] = (se - ss + 1) - tree[si]; // same logic for checking leaf // node or not if (ss != se) { // This is where we store values in // lazy nodes, rather than updating // the segment tree itself. Since we // don't need these updated values now // we postpone updates by storing // values in lazy[] lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } return; } // If not completely in rang, but overlaps, // recur for children int mid = (ss + se) / 2; updateRangeUtil(tree, lazy, si * 2 + 1, ss, mid, us, ue); updateRangeUtil(tree, lazy, si * 2 + 2, mid + 1, se, us, ue); // And use the result of children calls // to update this node tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; } // Function to update a range of values // in segment tree /* * us and eu -> starting and ending indexes * of update query * ue -> ending index of update query * diff -> which we need to add in the range * us to ue */ static void updateRange(int[] tree, int[] lazy, int n, int us, int ue) { updateRangeUtil(tree, lazy, 0, 0, n - 1, us, ue); } // A recursive function that constructs // Segment Tree for array[ss..se]. si is // index of current node in segment tree st static int constructSTUtil(int[] arr, int ss, int se, int[] tree, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { tree[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the sum of values in this node int mid = getMid(ss, se); tree[si] = constructSTUtil(arr, ss, mid, tree, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, tree, si * 2 + 2); return tree[si]; } /* * Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ static int[] constructST(int[] arr, int n) { // Allocate memory for segment tree // Height of segment tree int x = (int) Math.Ceiling(Math.Log(n) / Math.Log(2)); // Maximum size of segment tree int max_size = 2 * (int) Math.Pow(2, x) - 1; // Allocate memory int[] tree = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, tree, 0); // Return the constructed segment tree return tree; } /* * Function to construct lazy array for segment tree. This function allocates * memory for lazy array */ static int[] constructLazy(int[] arr, int n) { // Allocate memory for lazy array // Height of lazy array int x = (int) Math.Ceiling(Math.Log(n) / Math.Log(2)); // Maximum size of lazy array int max_size = 2 * (int) Math.Pow(2, x) - 1; // Allocate memory int[] lazy = new int[max_size]; // Return the lazy array return lazy; } static void Main() { // Initialize the array to zero // since all pieces are white int[] arr = {0, 0, 0, 0}; int n = arr.Length; // Build segment tree from given array int[] tree = constructST(arr, n); // Allocate memory for Lazy array int[] lazy = constructLazy(arr, n); // Print number of black pieces // from index 0 to 3 Console.WriteLine("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3)); // UpdateRange: Change color of pieces // from index 1 to 2 updateRange(tree, lazy, n, 1, 2); // Print number of black pieces // from index 0 to 1 Console.WriteLine("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 1)); // UpdateRange: Change color of // pieces from index 0 to 3 updateRange(tree, lazy, n, 0, 3); // Print number of black pieces // from index 0 to 3 Console.WriteLine("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3)); } } // This code is contributed by decode2207.
Javascript
<script> // Javascript implementation of the approach // A utility function to get the // middle index from corner indexes. function getMid(s, e) { return s + parseInt((e - s) / 2, 10); } /* * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * si --> Index of current node in * the segment tree. Initially * 0 is passed as root is always * at index 0 * ss & se --> Starting and ending * indexes of the segment * represented by current * node, i.e., tree[si] * qs & qe --> Starting and ending * indexes of query range */ function getSumUtil(tree, lazy, ss, se, qs, qe, si) { // If lazy flag is set for current node // of segment tree, then there are some // pending updates. So we need to make // sure that the pending updates are done // before processing the sub sum query if (lazy[si] != 0) { // Make pending updates to this node. // Note that this node represents // sum of elements in arr[ss..se] tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node // because if it is leaf node then // we cannot go further if (ss != se) { // Since we are not yet updating // children os si, we need to set // lazy values for the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // unset the lazy value for current // node as it has been updated lazy[si] = 0; } // Out of range if (ss > se || ss > qe || se < qs) return 0; // At this point we are sure that pending // lazy updates are done for current node. // So we can return value (same as it was // for query in our previous post) // If this segment lies in range if (ss >= qs && se <= qe) return tree[si]; // If a part of this segment overlaps // with the given range let mid = parseInt((ss + se) / 2, 10); return getSumUtil(tree, lazy, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(tree, lazy, mid + 1, se, qs, qe, 2 * si + 2); } // Return sum of elements in range from index // qs (query start) to qe (query end). It // mainly uses getSumUtil() function getSum(tree, lazy, n, qs, qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { document.write("Invalid Input"); return -1; } return getSumUtil(tree, lazy, 0, n - 1, qs, qe, 0); } /* * si -> index of current node in segment tree * ss and se -> Starting and ending indexes of * elements for which current * nodes stores sum. * us and ue -> starting and ending indexes of * update query */ function updateRangeUtil(tree, lazy, si, ss, se, us, ue) { // If lazy value is non-zero for current node // of segment tree, then there are some // pending updates. So we need to make sure that // the pending updates are done before making // new updates. Because this value may be used by // parent after recursive calls (See last line // of this function) if (lazy[si] != 0) { // Make pending updates using value stored // in lazy nodes tree[si] = (se - ss + 1) - tree[si]; // checking if it is not leaf node because if // it is leaf node then we cannot go further if (ss != se) { // We can postpone updating children // we don't need their new values now. // Since we are not yet updating children // of si, we need to set lazy flags for // the children lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } // Set the lazy value for current node // as 0 as it has been updated lazy[si] = 0; } // out of range if (ss > se || ss > ue || se < us) return; // Current segment is fully in range if (ss >= us && se <= ue) { // Add the difference to current node tree[si] = (se - ss + 1) - tree[si]; // same logic for checking leaf // node or not if (ss != se) { // This is where we store values in // lazy nodes, rather than updating // the segment tree itself. Since we // don't need these updated values now // we postpone updates by storing // values in lazy[] lazy[si * 2 + 1] = 1 - lazy[si * 2 + 1]; lazy[si * 2 + 2] = 1 - lazy[si * 2 + 2]; } return; } // If not completely in rang, but overlaps, // recur for children let mid = parseInt((ss + se) / 2, 10); updateRangeUtil(tree, lazy, si * 2 + 1, ss, mid, us, ue); updateRangeUtil(tree, lazy, si * 2 + 2, mid + 1, se, us, ue); // And use the result of children calls // to update this node tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; } // Function to update a range of values // in segment tree /* * us and eu -> starting and ending indexes * of update query * ue -> ending index of update query * diff -> which we need to add in the range * us to ue */ function updateRange(tree, lazy, n, us, ue) { updateRangeUtil(tree, lazy, 0, 0, n - 1, us, ue); } // A recursive function that constructs // Segment Tree for array[ss..se]. si is // index of current node in segment tree st function constructSTUtil(arr, ss, se, tree, si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { tree[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the sum of values in this node let mid = getMid(ss, se); tree[si] = constructSTUtil(arr, ss, mid, tree, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, tree, si * 2 + 2); return tree[si]; } /* * Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ function constructST(arr, n) { // Allocate memory for segment tree // Height of segment tree let x = parseInt(Math.ceil(Math.log(n) / Math.log(2)), 10); // Maximum size of segment tree let max_size = 2 * parseInt(Math.pow(2, x), 10) - 1; // Allocate memory let tree = new Array(max_size); tree.fill(0); // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, tree, 0); // Return the constructed segment tree return tree; } /* * Function to construct lazy array for segment tree. This function allocates * memory for lazy array */ function constructLazy(arr, n) { // Allocate memory for lazy array // Height of lazy array let x = parseInt(Math.ceil(Math.log(n) / Math.log(2)), 10); // Maximum size of lazy array let max_size = 2 * parseInt(Math.pow(2, x), 10) - 1; // Allocate memory let lazy = new Array(max_size); lazy.fill(0); // Return the lazy array return lazy; } // Initialize the array to zero // since all pieces are white let arr = [0, 0, 0, 0]; let n = arr.length; // Build segment tree from given array let tree = constructST(arr, n); // Allocate memory for Lazy array let lazy = constructLazy(arr, n); // Print number of black pieces // from index 0 to 3 document.write("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3) + "</br>"); // UpdateRange: Change color of pieces // from index 1 to 2 updateRange(tree, lazy, n, 1, 2); // Print number of black pieces // from index 0 to 1 document.write("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 1) + "</br>"); // UpdateRange: Change color of // pieces from index 0 to 3 updateRange(tree, lazy, n, 0, 3); // Print number of black pieces // from index 0 to 3 document.write("Black Pieces in given range = " + getSum(tree, lazy, n, 0, 3)); // This code is contributed by divyeshrabadiy07. </script>
Black Pieces in given range = 0 Black Pieces in given range = 1 Black Pieces in given range = 2
Complejidad del tiempo: Cada consulta y cada actualización tomará un tiempo O(Log(N)) , donde N es el número de piezas del tablero de ajedrez. Por lo tanto, para las consultas Q, la complejidad del peor de los casos será (Q * Log(N))
Tema relacionado: Árbol de segmentos
Publicación traducida automáticamente
Artículo escrito por Nishant Tanwar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA