Tamaño máximo del cuadrado tal que todas las subarrays de ese tamaño tengan una suma menor que K

Dada una array N x M de enteros y un entero K , la tarea es encontrar el tamaño de la subarray cuadrada máxima (S x S) , tal que todas las subarrays cuadradas de la array dada de ese tamaño tengan una suma menos que k .

Ejemplos: 

Input: K = 30 
mat[N][M] = {{1, 2, 3, 4, 6}, 
             {5, 3, 8, 1, 2}, 
             {4, 6, 7, 5, 5}, 
             {2, 4, 8, 9, 4} }; 
Output: 2
Explanation:
All Sub-matrices of size 2 x 2 
have sum less than 30

Input : K = 100 
mat[N][M] = { { 1, 2, 3, 4 },
              { 5, 6, 7, 8 }, 
              { 9, 10, 11, 12 }, 
              { 13, 14, 15, 16 } };
Output: 3
Explanation:
All Sub-matrices of size 3 x 3 
have sum less than 100

Enfoque ingenuo La solución básica es elegir el tamaño S de la subarray y encontrar todas las subarrays de ese tamaño y verificar que la suma de todas las subarrays sea menor que la suma dada, mientras que esto se puede mejorar calculando la suma de las array utilizando este enfoque. Por lo tanto, la tarea será elegir el tamaño máximo posible y la posición inicial y final de todas las subarrays posibles. Debido a lo cual la complejidad temporal total será O(N 3 ).

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation to find the
// maximum size square submatrix
// such that their sum is less than K
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Size of matrix
#define N 4
#define M 5
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
void preProcess(int mat[N][M],
                int aux[N][M])
{
    // Loop to copy the first row
    // of the matrix into the aux matrix
    for (int i = 0; i < M; i++)
        aux[0][i] = mat[0][i];
     
    // Computing the sum column-wise
    for (int i = 1; i < N; i++)
        for (int j = 0; j < M; j++)
            aux[i][j] = mat[i][j] +
                      aux[i - 1][j];
 
    // Computing row wise sum
    for (int i = 0; i < N; i++)
        for (int j = 1; j < M; j++)
            aux[i][j] += aux[i][j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
int sumQuery(int aux[N][M], int tli,
          int tlj, int rbi, int rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi][rbj];
     
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
     
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
     
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res +
           aux[tli - 1][tlj - 1];
 
    return res;
}
 
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
int maximumSquareSize(int mat[N][M], int K)
{
    int aux[N][M];
    preProcess(mat, aux);
     
    // Loop to choose the size of matrix
    for (int i = min(N, M); i >= 1; i--) {
 
        bool satisfies = true;
         
        // Loop to find the sum of the
        // matrix of every possible submatrix
        for (int x = 0; x < N; x++) {
            for (int y = 0; y < M; y++) {
                if (x + i - 1 <= N - 1 &&
                     y + i - 1 <= M - 1) {
                    if (sumQuery(aux, x, y,
                   x + i - 1, y + i - 1) > K)
                        satisfies = false;
                }
            }
        }
        if (satisfies == true)
            return (i);
    }
    return 0;
}
 
// Driver Code
int main()
{
    int K = 30;
    int mat[N][M] = { { 1, 2, 3, 4, 6 },
                    { 5, 3, 8, 1, 2 },
                    { 4, 6, 7, 5, 5 },
                    { 2, 4, 8, 9, 4 } };
 
    cout << maximumSquareSize(mat, K);
    return 0;
}

Java

// Java implementation to find the
// maximum size square submatrix
// such that their sum is less than K
class GFG{
  
// Size of matrix
static final int N = 4;
static final int M = 5;
  
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
static void preProcess(int [][]mat,
                int [][]aux)
{
    // Loop to copy the first row
    // of the matrix into the aux matrix
    for (int i = 0; i < M; i++)
        aux[0][i] = mat[0][i];
      
    // Computing the sum column-wise
    for (int i = 1; i < N; i++)
        for (int j = 0; j < M; j++)
            aux[i][j] = mat[i][j] +
                      aux[i - 1][j];
  
    // Computing row wise sum
    for (int i = 0; i < N; i++)
        for (int j = 1; j < M; j++)
            aux[i][j] += aux[i][j - 1];
}
  
// Function to find the sum of a
// submatrix with the given indices
static int sumQuery(int [][]aux, int tli,
          int tlj, int rbi, int rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi][rbj];
      
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
      
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
      
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res +
           aux[tli - 1][tlj - 1];
  
    return res;
}
  
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
static int maximumSquareSize(int [][]mat, int K)
{
    int [][]aux = new int[N][M];
    preProcess(mat, aux);
      
    // Loop to choose the size of matrix
    for (int i = Math.min(N, M); i >= 1; i--) {
  
        boolean satisfies = true;
          
        // Loop to find the sum of the
        // matrix of every possible submatrix
        for (int x = 0; x < N; x++) {
            for (int y = 0; y < M; y++) {
                if (x + i - 1 <= N - 1 &&
                     y + i - 1 <= M - 1) {
                    if (sumQuery(aux, x, y,
                   x + i - 1, y + i - 1) > K)
                        satisfies = false;
                }
            }
        }
        if (satisfies == true)
            return (i);
    }
    return 0;
}
  
// Driver Code
public static void main(String[] args)
{
    int K = 30;
    int mat[][] = { { 1, 2, 3, 4, 6 },
                    { 5, 3, 8, 1, 2 },
                    { 4, 6, 7, 5, 5 },
                    { 2, 4, 8, 9, 4 } };
  
    System.out.print(maximumSquareSize(mat, K));
}
}
 
// This code is contributed by PrinciRaj1992

Python3

# Python3 implementation to find the
# maximum size square submatrix
# such that their sum is less than K
 
# Size of matrix
N = 4
M = 5
 
# Function to preprocess the matrix
# for computing the sum of every
# possible matrix of the given size
def preProcess(mat, aux):
 
    # Loop to copy the first row
    # of the matrix into the aux matrix
    for i in range (M):
        aux[0][i] = mat[0][i]
     
    # Computing the sum column-wise
    for i in range (1, N):
        for j in range (M):
            aux[i][j] = (mat[i][j] +
                         aux[i - 1][j])
 
    # Computing row wise sum
    for i in range (N):
        for j in range (1, M):
            aux[i][j] += aux[i][j - 1]
 
# Function to find the sum of a
# submatrix with the given indices
def sumQuery(aux, tli, tlj, rbi, rbj):
 
    # Overall sum from the top to
    # right corner of matrix
    res = aux[rbi][rbj]
     
    # Removing the sum from the top
    # corer of the matrix
    if (tli > 0):
        res = res - aux[tli - 1][rbj]
     
    # Remove the overlapping sum
    if (tlj > 0):
        res = res - aux[rbi][tlj - 1]
     
    # Add the sum of top corner
    # which is subtracted twice
    if (tli > 0 and tlj > 0):
        res = (res +
        aux[tli - 1][tlj - 1])
 
    return res
 
# Function to find the maximum
# square size possible with the
# such that every submatrix have
# sum less than the given sum
def maximumSquareSize(mat, K):
 
    aux = [[0 for x in range (M)]
              for y in range (N)]
    preProcess(mat, aux)
     
    # Loop to choose the size of matrix
    for i in range (min(N, M), 0, -1):
 
        satisfies = True
         
        # Loop to find the sum of the
        # matrix of every possible submatrix
        for x in range (N):
            for y in range (M) :
                if (x + i - 1 <= N - 1 and
                    y + i - 1 <= M - 1):
                    if (sumQuery(aux, x, y,
                                 x + i - 1,
                                 y + i - 1) > K):
                        satisfies = False
             
        if (satisfies == True):
            return (i)
    return 0
 
# Driver Code
if __name__ == "__main__":
 
    K = 30
    mat = [[1, 2, 3, 4, 6],
            [5, 3, 8, 1, 2],
           [4, 6, 7, 5, 5],
           [2, 4, 8, 9, 4]]
 
    print( maximumSquareSize(mat, K))
 
# This code is contributed by Chitranayal

C#

// C# implementation to find the
// maximum size square submatrix
// such that their sum is less than K
using System;
 
public class GFG{
   
// Size of matrix
static readonly int N = 4;
static readonly int M = 5;
   
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
static void preProcess(int [,]mat,
                int [,]aux)
{
    // Loop to copy the first row
    // of the matrix into the aux matrix
    for (int i = 0; i < M; i++)
        aux[0,i] = mat[0,i];
       
    // Computing the sum column-wise
    for (int i = 1; i < N; i++)
        for (int j = 0; j < M; j++)
            aux[i,j] = mat[i,j] +
                      aux[i - 1,j];
   
    // Computing row wise sum
    for (int i = 0; i < N; i++)
        for (int j = 1; j < M; j++)
            aux[i,j] += aux[i,j - 1];
}
   
// Function to find the sum of a
// submatrix with the given indices
static int sumQuery(int [,]aux, int tli,
          int tlj, int rbi, int rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi,rbj];
       
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1,rbj];
       
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi,tlj - 1];
       
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res +
           aux[tli - 1,tlj - 1];
   
    return res;
}
   
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
static int maximumSquareSize(int [,]mat, int K)
{
    int [,]aux = new int[N,M];
    preProcess(mat, aux);
       
    // Loop to choose the size of matrix
    for (int i = Math.Min(N, M); i >= 1; i--) {
   
        bool satisfies = true;
           
        // Loop to find the sum of the
        // matrix of every possible submatrix
        for (int x = 0; x < N; x++) {
            for (int y = 0; y < M; y++) {
                if (x + i - 1 <= N - 1 &&
                     y + i - 1 <= M - 1) {
                    if (sumQuery(aux, x, y,
                   x + i - 1, y + i - 1) > K)
                        satisfies = false;
                }
            }
        }
        if (satisfies == true)
            return (i);
    }
    return 0;
}
   
// Driver Code
public static void Main(String[] args)
{
    int K = 30;
    int [,]mat = { { 1, 2, 3, 4, 6 },
                    { 5, 3, 8, 1, 2 },
                    { 4, 6, 7, 5, 5 },
                    { 2, 4, 8, 9, 4 } };
   
    Console.Write(maximumSquareSize(mat, K));
}
}
  
 
// This code contributed by PrinciRaj1992

Javascript

<script>
 
// JavaScript implementation to find the
// maximum size square submatrix
// such that their sum is less than K
 
// Size of matrix
let N = 4;
let M = 5;
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
function preProcess(mat,aux)
{
    // Loop to copy the first row
    // of the matrix into the aux matrix
    for (let i = 0; i < M; i++)
        aux[0][i] = mat[0][i];
       
    // Computing the sum column-wise
    for (let i = 1; i < N; i++)
        for (let j = 0; j < M; j++)
            aux[i][j] = mat[i][j] +
                      aux[i - 1][j];
   
    // Computing row wise sum
    for (let i = 0; i < N; i++)
        for (let j = 1; j < M; j++)
            aux[i][j] += aux[i][j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
function sumQuery(aux,tli,tlj,rbi,rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    let res = aux[rbi][rbj];
       
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
       
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
       
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res +
           aux[tli - 1][tlj - 1];
   
    return res;
}
 
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
function maximumSquareSize(mat,k)
{
    let aux = new Array(N);
    for(let i=0;i<N;i++)
    {
        aux[i]=new Array(M);
    }
     
    preProcess(mat, aux);
       
    // Loop to choose the size of matrix
    for (let i = Math.min(N, M); i >= 1; i--) {
   
        let satisfies = true;
           
        // Loop to find the sum of the
        // matrix of every possible submatrix
        for (let x = 0; x < N; x++) {
            for (let y = 0; y < M; y++) {
                if (x + i - 1 <= N - 1 &&
                     y + i - 1 <= M - 1) {
                    if (sumQuery(aux, x, y,
                   x + i - 1, y + i - 1) > K)
                        satisfies = false;
                }
            }
        }
        if (satisfies == true)
            return (i);
    }
    return 0;
}
 
// Driver Code
let mat = [[1, 2, 3, 4, 6],
            [5, 3, 8, 1, 2],
           [4, 6, 7, 5, 5],
           [2, 4, 8, 9, 4]];
            
let K = 30;
document.write(maximumSquareSize(mat, K));
     
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

2

 

  • Complejidad temporal: O(N 3 )
  • Espacio Auxiliar: O(N 2 )

Enfoque eficiente: la observación clave es que, si un cuadrado de lado s tiene el tamaño máximo que satisface la condición, entonces todos los tamaños más pequeños satisfarán la condición. Usando esto, podemos reducir nuestro espacio de búsqueda en cada paso a la mitad, que es precisamente la idea de Binary Search . A continuación se muestra la ilustración de los pasos del enfoque: 

  • Espacio de búsqueda: El espacio de búsqueda para este problema será de [1, min(N, M)]. Ese es el espacio de búsqueda para la búsqueda binaria se define como –
low = 1
high = min(N, M)
  • Siguiente espacio de búsqueda: en cada iteración, encuentre la mitad del espacio de búsqueda y luego, finalmente, verifique que todos los subarreglos de ese tamaño tengan una suma menor que K . Si todos los subarreglos de ese tamaño tienen una suma menor que K. Entonces, el siguiente espacio de búsqueda posible estará a la derecha del medio. De lo contrario, el siguiente espacio de búsqueda posible estará a la izquierda del medio. Eso es menos que el medio. 
    • Caso 1: Condición cuando todos los subarreglos de tamaño medio tienen una suma menor que K . Después –
if checkSubmatrix(mat, mid, K):
    low = mid + 1
  • Caso 2: Condición cuando todos los subarreglos de tamaño medio tienen una suma mayor que K . Después –
if not checkSubmatrix(mat, mid, K):
    high = mid - 1

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation to find the
// maximum size square submatrix
// such that their sum is less than K
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Size of matrix
#define N 4
#define M 5
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
void preProcess(int mat[N][M],
                     int aux[N][M])
{
    // Loop to copy the first row
    // of the matrix into the aux matrix
    for (int i = 0; i < M; i++)
        aux[0][i] = mat[0][i];
 
    // Computing the sum column-wise
    for (int i = 1; i < N; i++)
        for (int j = 0; j < M; j++)
            aux[i][j] = mat[i][j] +
                       aux[i - 1][j];
 
    // Computing row wise sum
    for (int i = 0; i < N; i++)
        for (int j = 1; j < M; j++)
            aux[i][j] += aux[i][j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
int sumQuery(int aux[N][M], int tli,
          int tlj, int rbi, int rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi][rbj];
 
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
 
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
 
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res + aux[tli - 1][tlj - 1];
 
    return res;
}
 
// Function to check whether square
// sub matrices of size mid satisfy
// the condition or not
bool check(int mid, int aux[N][M],
                           int K)
{
 
    bool satisfies = true;
     
    // Iterating through all possible
    // submatrices of given size
    for (int x = 0; x < N; x++) {
        for (int y = 0; y < M; y++) {
            if (x + mid - 1 <= N - 1 &&
                  y + mid - 1 <= M - 1) {
                if (sumQuery(aux, x, y,
          x + mid - 1, y + mid - 1) > K)
                    satisfies = false;
            }
        }
    }
    return (satisfies == true);
}
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
int maximumSquareSize(int mat[N][M],
                              int K)
{
    int aux[N][M];
 
    preProcess(mat, aux);
     
    // Search space
    int low = 1, high = min(N, M);
    int mid;
     
    // Binary search for size
    while (high - low > 1) {
        mid = (low + high) / 2;
         
        // Check if the mid satisfies
        // the given condition
        if (check(mid, aux, K)) {
            low = mid;
        }
        else
            high = mid;
    }
    if (check(high, aux, K))
        return high;
    return low;
}
 
// Driver Code
int main()
{
    int K = 30;
    int mat[N][M] = { { 1, 2, 3, 4, 6 },
                    { 5, 3, 8, 1, 2 },
                    { 4, 6, 7, 5, 5 },
                    { 2, 4, 8, 9, 4 } };
 
    cout << maximumSquareSize(mat, K);
    return 0;
}

Java

// Java implementation to find the
// maximum size square submatrix
// such that their sum is less than K
class GFG{
 
// Size of matrix
static final int N = 4;
static final int M = 5;
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
static void preProcess(int [][]mat,
                       int [][]aux)
{
     
    // Loop to copy the first row of
    // the matrix into the aux matrix
    for(int i = 0; i < M; i++)
       aux[0][i] = mat[0][i];
 
    // Computing the sum column-wise
    for(int i = 1; i < N; i++)
       for(int j = 0; j < M; j++)
          aux[i][j] = mat[i][j] +
                      aux[i - 1][j];
 
    // Computing row wise sum
    for(int i = 0; i < N; i++)
       for(int j = 1; j < M; j++)
          aux[i][j] += aux[i][j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
static int sumQuery(int [][]aux, int tli,
                    int tlj, int rbi, int rbj)
{
     
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi][rbj];
 
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
 
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
 
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res + aux[tli - 1][tlj - 1];
 
    return res;
}
 
// Function to check whether square
// sub matrices of size mid satisfy
// the condition or not
static boolean check(int mid, int [][]aux,
                     int K)
{
 
    boolean satisfies = true;
     
    // Iterating through all possible
    // submatrices of given size
    for(int x = 0; x < N; x++)
    {
       for(int y = 0; y < M; y++)
       {
          if (x + mid - 1 <= N - 1 &&
              y + mid - 1 <= M - 1)
          {
              if (sumQuery(aux, x, y,
                           x + mid - 1,
                           y + mid - 1) > K)
                  satisfies = false;
          }
       }
    }
    return (satisfies == true);
}
 
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
static int maximumSquareSize(int [][]mat,
                             int K)
{
    int [][]aux = new int[N][M];
 
    preProcess(mat, aux);
     
    // Search space
    int low = 1, high = Math.min(N, M);
    int mid;
     
    // Binary search for size
    while (high - low > 1)
    {
        mid = (low + high) / 2;
         
        // Check if the mid satisfies
        // the given condition
        if (check(mid, aux, K))
        {
            low = mid;
        }
        else
            high = mid;
    }
    if (check(high, aux, K))
        return high;
    return low;
}
 
// Driver Code
public static void main(String[] args)
{
    int K = 30;
    int [][]mat = { { 1, 2, 3, 4, 6 },
                    { 5, 3, 8, 1, 2 },
                    { 4, 6, 7, 5, 5 },
                    { 2, 4, 8, 9, 4 } };
 
    System.out.print(maximumSquareSize(mat, K));
}
}
 
// This code is contributed by Rajput-Ji

Python3

# Python3 implementation to find the
# maximum size square submatrix
# such that their sum is less than K
 
# Function to preprocess the matrix
# for computing the sum of every
# possible matrix of the given size
def preProcess(mat, aux):
     
    # Loop to copy the first row
    # of the matrix into the aux matrix
    for i in range(5):
        aux[0][i] = mat[0][i]
 
    # Computing the sum column-wise
    for i in range(1, 4):
        for j in range(5):
            aux[i][j] = (mat[i][j] +
                         aux[i - 1][j])
 
    # Computing row wise sum
    for i in range(4):
        for j in range(1, 5):
            aux[i][j] += aux[i][j - 1]
             
    return aux
 
# Function to find the sum of a
# submatrix with the given indices
def sumQuery(aux, tli, tlj, rbi, rbj):
     
    # Overall sum from the top to
    # right corner of matrix
    res = aux[rbi][rbj]
 
    # Removing the sum from the top
    # corer of the matrix
    if (tli > 0):
        res = res - aux[tli - 1][rbj]
 
    # Remove the overlapping sum
    if (tlj > 0):
        res = res - aux[rbi][tlj - 1]
 
    # Add the sum of top corner
    # which is subtracted twice
    if (tli > 0 and tlj > 0):
        res = res + aux[tli - 1][tlj - 1]
 
    return res
 
# Function to check whether square
# sub matrices of size mid satisfy
# the condition or not
def check(mid, aux, K):
     
    satisfies = True
 
    # Iterating through all possible
    # submatrices of given size
    for x in range(4):
        for y in range(5):
            if (x + mid - 1 <= 4 - 1 and
                y + mid - 1 <= 5 - 1):
                if (sumQuery(aux, x, y,
                             x + mid - 1,
                             y + mid - 1) > K):
                    satisfies = False
                     
    return True if satisfies == True else False
     
# Function to find the maximum
# square size possible with the
# such that every submatrix have
# sum less than the given sum
def maximumSquareSize(mat, K):
     
    aux = [[0 for i in range(5)]
              for i in range(4)]
 
    aux = preProcess(mat, aux)
 
    # Search space
    low , high = 1, min(4, 5)
    mid = 0
 
    # Binary search for size
    while (high - low > 1):
        mid = (low + high) // 2
 
        # Check if the mid satisfies
        # the given condition
        if (check(mid, aux, K)):
            low = mid
        else:
            high = mid
             
    if (check(high, aux, K)):
        return high
         
    return low
 
# Driver Code
if __name__ == '__main__':
     
    K = 30
     
    mat = [ [ 1, 2, 3, 4, 6 ],
            [ 5, 3, 8, 1, 2 ],
            [ 4, 6, 7, 5, 5 ],
            [ 2, 4, 8, 9, 4 ] ]
 
    print(maximumSquareSize(mat, K))
 
# This code is contributed by mohit kumar 29

C#

// C# implementation to find the
// maximum size square submatrix
// such that their sum is less than K
using System;
 
class GFG{
 
// Size of matrix
static readonly int N = 4;
static readonly int M = 5;
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
static void preProcess(int [,]mat,
                       int [,]aux)
{
     
    // Loop to copy the first row of
    // the matrix into the aux matrix
    for(int i = 0; i < M; i++)
       aux[0, i] = mat[0, i];
 
    // Computing the sum column-wise
    for(int i = 1; i < N; i++)
       for(int j = 0; j < M; j++)
          aux[i, j] = mat[i, j] +
                      aux[i - 1, j];
 
    // Computing row wise sum
    for(int i = 0; i < N; i++)
       for(int j = 1; j < M; j++)
          aux[i, j] += aux[i, j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
static int sumQuery(int [,]aux, int tli,
                    int tlj, int rbi, int rbj)
{
     
    // Overall sum from the top to
    // right corner of matrix
    int res = aux[rbi, rbj];
 
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1, rbj];
 
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi, tlj - 1];
 
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res + aux[tli - 1, tlj - 1];
 
    return res;
}
 
// Function to check whether square
// sub matrices of size mid satisfy
// the condition or not
static bool check(int mid, int [,]aux,
                  int K)
{
 
    bool satisfies = true;
     
    // Iterating through all possible
    // submatrices of given size
    for(int x = 0; x < N; x++)
    {
       for(int y = 0; y < M; y++)
       {
          if (x + mid - 1 <= N - 1 &&
              y + mid - 1 <= M - 1)
          {
              if (sumQuery(aux, x, y,
                           x + mid - 1,
                           y + mid - 1) > K)
                  satisfies = false;
          }
       }
    }
    return (satisfies == true);
}
 
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
static int maximumSquareSize(int [,]mat,
                             int K)
{
    int [,]aux = new int[N, M];
 
    preProcess(mat, aux);
     
    // Search space
    int low = 1, high = Math.Min(N, M);
    int mid;
     
    // Binary search for size
    while (high - low > 1)
    {
        mid = (low + high) / 2;
         
        // Check if the mid satisfies
        // the given condition
        if (check(mid, aux, K))
        {
            low = mid;
        }
        else
            high = mid;
    }
    if (check(high, aux, K))
        return high;
    return low;
}
 
// Driver Code
public static void Main(String[] args)
{
    int K = 30;
    int [,]mat = { { 1, 2, 3, 4, 6 },
                   { 5, 3, 8, 1, 2 },
                   { 4, 6, 7, 5, 5 },
                   { 2, 4, 8, 9, 4 } };
 
    Console.Write(maximumSquareSize(mat, K));
}
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
// Javascript implementation to find the
// maximum size square submatrix
// such that their sum is less than K
 
// Size of matrix
let N = 4;
let M = 5;
 
// Function to preprocess the matrix
// for computing the sum of every
// possible matrix of the given size
function preProcess(mat,aux)
{
    // Loop to copy the first row of
    // the matrix into the aux matrix
    for(let i = 0; i < M; i++)
       aux[0][i] = mat[0][i];
  
    // Computing the sum column-wise
    for(let i = 1; i < N; i++)
       for(let j = 0; j < M; j++)
          aux[i][j] = mat[i][j] +
                      aux[i - 1][j];
  
    // Computing row wise sum
    for(let i = 0; i < N; i++)
       for(let j = 1; j < M; j++)
          aux[i][j] += aux[i][j - 1];
}
 
// Function to find the sum of a
// submatrix with the given indices
function sumQuery(aux,tli,tlj,rbi,rbj)
{
    // Overall sum from the top to
    // right corner of matrix
    let res = aux[rbi][rbj];
  
    // Removing the sum from the top
    // corer of the matrix
    if (tli > 0)
        res = res - aux[tli - 1][rbj];
  
    // Remove the overlapping sum
    if (tlj > 0)
        res = res - aux[rbi][tlj - 1];
  
    // Add the sum of top corner
    // which is subtracted twice
    if (tli > 0 && tlj > 0)
        res = res + aux[tli - 1][tlj - 1];
  
    return res;
}
 
// Function to check whether square
// sub matrices of size mid satisfy
// the condition or not
function check(mid,aux,K)
{
    let satisfies = true;
      
    // Iterating through all possible
    // submatrices of given size
    for(let x = 0; x < N; x++)
    {
       for(let y = 0; y < M; y++)
       {
          if (x + mid - 1 <= N - 1 &&
              y + mid - 1 <= M - 1)
          {
              if (sumQuery(aux, x, y,
                           x + mid - 1,
                           y + mid - 1) > K)
                  satisfies = false;
          }
       }
    }
    return (satisfies == true);
}
 
// Function to find the maximum
// square size possible with the
// such that every submatrix have
// sum less than the given sum
function maximumSquareSize(mat,K)
{
    let aux = new Array(N);
    for(let i=0;i<N;i++)
    {
        aux[i]=new Array(M);
    }
  
    preProcess(mat, aux);
      
    // Search space
    let low = 1, high = Math.min(N, M);
    let mid;
      
    // Binary search for size
    while (high - low > 1)
    {
        mid = Math.floor((low + high) / 2);
          
        // Check if the mid satisfies
        // the given condition
        if (check(mid, aux, K))
        {
            low = mid;
        }
        else
            high = mid;
    }
    if (check(high, aux, K))
        return high;
    return low;
}
 
// Driver Code
let K = 30;
let mat = [[1, 2, 3, 4, 6 ],
                    [ 5, 3, 8, 1, 2 ],
                    [ 4, 6, 7, 5, 5 ],
                    [ 2, 4, 8, 9, 4 ] ];
document.write(maximumSquareSize(mat, K));
 
 
// This code is contributed by rag2127
</script>
Producción: 

2

 

Análisis de rendimiento: 

  • Complejidad de tiempo: O(N 2 * log(N) )
  • Espacio Auxiliar: O(N 2 )

Publicación traducida automáticamente

Artículo escrito por king_tsar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *