Suma máxima de Nodes hoja entre todos los niveles del árbol binario dado

Dado un árbol binario que tiene Nodes positivos y negativos, la tarea es encontrar la suma máxima de Nodes hoja entre todos los niveles del árbol binario dado.
Ejemplos: 
 

Input:
                        4
                      /   \
                     2    -5
                    / \   
                  -1   3 
Output: 2
Sum of all leaves at 0th level is 0.
Sum of all leaves at 1st level is -5.
Sum of all leaves at 2nd level is 2.
Hence maximum sum is 2.

Input:
                 1
               /   \
             2      3
           /  \      \
          4    5      8
                    /   \
                   6     7  
Output: 13

Enfoque: La idea para resolver el problema anterior es hacer un recorrido del árbol por orden de niveles . Mientras realiza el recorrido, procese los Nodes de diferentes niveles por separado. Para cada nivel que se procese, calcule la suma de los Nodes hoja en el nivel y realice un seguimiento de la suma máxima.
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node has data, pointer to left child
// and a pointer to right child
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Function to return the maximum sum of leaf nodes
// at any level in tree using level order traversal
int maxLeafNodesSum(struct Node* root)
{
 
    // Base case
    if (root == NULL)
        return 0;
 
    // Initialize result
    int result = 0;
 
    // Do Level order traversal keeping track
    // of the number of nodes at every level
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
 
        // Get the size of queue when the level order
        // traversal for one level finishes
        int count = q.size();
 
        // Iterate for all the nodes in the queue currently
        int sum = 0;
        while (count--) {
 
            // Dequeue an node from queue
            Node* temp = q.front();
            q.pop();
 
            // Add leaf node's value to current sum
            if (temp->left == NULL && temp->right == NULL)
 
                sum = sum + temp->data;
 
            // Enqueue left and right children of
            // dequeued node
            if (temp->left != NULL)
                q.push(temp->left);
            if (temp->right != NULL)
                q.push(temp->right);
        }
 
        // Update the maximum sum of leaf nodes value
        result = max(sum, result);
    }
 
    return result;
}
 
// Helper function that allocates a new node with the
// given data and NULL left and right pointers
struct Node* newNode(int data)
{
    struct Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Driver code
int main()
{
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->right = newNode(8);
    root->right->right->left = newNode(6);
    root->right->right->right = newNode(7);
    cout << maxLeafNodesSum(root) << endl;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
class GFG
{
 
// A binary tree node has data,
// pointer to left child and
// a pointer to right child
static class Node
{
    int data;
    Node left, right;
};
 
// Function to return the maximum sum
// of leaf nodes at any level in tree
// using level order traversal
static int maxLeafNodesSum(Node root)
{
 
    // Base case
    if (root == null)
        return 0;
 
    // Initialize result
    int result = 0;
 
    // Do Level order traversal keeping track
    // of the number of nodes at every level
    Queue<Node> q = new LinkedList<>();
    q.add(root);
    while (!q.isEmpty())
    {
 
        // Get the size of queue when the level order
        // traversal for one level finishes
        int count = q.size();
 
        // Iterate for all the nodes
        // in the queue currently
        int sum = 0;
        while (count-- > 0)
        {
 
            // Dequeue an node from queue
            Node temp = q.peek();
            q.remove();
 
            // Add leaf node's value to current sum
            if (temp.left == null &&
                temp.right == null)
 
                sum = sum + temp.data;
 
            // Enqueue left and right children of
            // dequeued node
            if (temp.left != null)
                q.add(temp.left);
            if (temp.right != null)
                q.add(temp.right);
        }
 
        // Update the maximum sum of leaf nodes value
        result = Math.max(sum, result);
    }
 
    return result;
}
 
// Helper function that allocates a new node with the
// given data and null left and right pointers
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Driver code
public static void main(String[] args)
{
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.right = newNode(8);
    root.right.right.left = newNode(6);
    root.right.right.right = newNode(7);
    System.out.println(maxLeafNodesSum(root));
}
}
 
// This code is contributed by Rajput-Ji

Python3

# Python3 implementation of the approach
 
# A binary tree node has data,
# pointer to left child and
# a pointer to right child
# Helper function that allocates
# a new node with the given data
# and None left and right pointers
class newNode:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Function to return the maximum sum
# of leaf nodes at any level in tree
# using level order traversal
def maxLeafNodesSum(root):
     
    # Base case
    if (root == None):
        return 0
         
    # Initialize result
    result = 0
     
    # Do Level order traversal keeping track
    # of the number of nodes at every level
    q = []
    q.append(root)
    while(len(q)):
         
        # Get the size of queue when the level order
        # traversal for one level finishes
        count = len(q)
         
        # Iterate for all the nodes
        # in the queue currently
        sum = 0
        while (count):
             
            # Dequeue an node from queue
            temp = q[0]
            q.pop(0)
 
            # Add leaf node's value to current sum
            if (temp.left == None and
                temp.right == None):
                sum = sum + temp.data
                 
            # Enqueue left and right children of
            # dequeued node
            if (temp.left != None):
                q.append(temp.left)
            if (temp.right != None):
                q.append(temp.right)
            count -= 1
             
        # Update the maximum sum
        # of leaf nodes value
        result = max(sum, result)
     
    return result
         
# Driver code
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.right = newNode(8)
root.right.right.left = newNode(6)
root.right.right.right = newNode(7)
print(maxLeafNodesSum(root))
 
# This code is contributed by SHUBHAMSINGH10

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// A binary tree node has data,
// pointer to left child and
// a pointer to right child
class Node
{
    public int data;
    public Node left, right;
};
 
// Function to return the maximum sum
// of leaf nodes at any level in tree
// using level order traversal
static int maxLeafNodesSum(Node root)
{
 
    // Base case
    if (root == null)
        return 0;
 
    // Initialize result
    int result = 0;
 
    // Do Level order traversal keeping track
    // of the number of nodes at every level
    Queue<Node> q = new Queue<Node>();
    q.Enqueue(root);
    while (q.Count != 0)
    {
 
        // Get the size of queue when the level order
        // traversal for one level finishes
        int count = q.Count;
 
        // Iterate for all the nodes
        // in the queue currently
        int sum = 0;
        while (count-- > 0)
        {
 
            // Dequeue an node from queue
            Node temp = q.Peek();
            q.Dequeue();
 
            // Add leaf node's value to current sum
            if (temp.left == null &&
                temp.right == null)
 
                sum = sum + temp.data;
 
            // Enqueue left and right children of
            // dequeued node
            if (temp.left != null)
                q.Enqueue(temp.left);
            if (temp.right != null)
                q.Enqueue(temp.right);
        }
 
        // Update the maximum sum of leaf nodes value
        result = Math.Max(sum, result);
    }
 
    return result;
}
 
// Helper function that allocates a new node with the
// given data and null left and right pointers
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Driver code
public static void Main(String[] args)
{
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.right = newNode(8);
    root.right.right.left = newNode(6);
    root.right.right.right = newNode(7);
    Console.WriteLine(maxLeafNodesSum(root));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
 
    // JavaScript implementation of the approach
     
    // A binary tree node has data,
    // pointer to left child and
    // a pointer to right child
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Function to return the maximum sum
    // of leaf nodes at any level in tree
    // using level order traversal
    function maxLeafNodesSum(root)
    {
 
        // Base case
        if (root == null)
            return 0;
 
        // Initialize result
        let result = 0;
 
        // Do Level order traversal keeping track
        // of the number of nodes at every level
        let q = [];
        q.push(root);
        while (q.length > 0)
        {
 
            // Get the size of queue when the level order
            // traversal for one level finishes
            let count = q.length;
 
            // Iterate for all the nodes
            // in the queue currently
            let sum = 0;
            while (count-- > 0)
            {
 
                // Dequeue an node from queue
                let temp = q[0];
                q.shift();
 
                // Add leaf node's value to current sum
                if (temp.left == null &&
                    temp.right == null)
 
                    sum = sum + temp.data;
 
                // Enqueue left and right children of
                // dequeued node
                if (temp.left != null)
                    q.push(temp.left);
                if (temp.right != null)
                    q.push(temp.right);
            }
 
            // Update the maximum sum of leaf nodes value
            result = Math.max(sum, result);
        }
 
        return result;
    }
 
    // Helper function that allocates a new node with the
    // given data and null left and right pointers
    function newNode(data)
    {
        let node = new Node(data);
        return (node);
    }
     
    let root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.right = newNode(8);
    root.right.right.left = newNode(6);
    root.right.right.right = newNode(7);
    document.write(maxLeafNodesSum(root));
     
</script>
Producción: 

13

 

Publicación traducida automáticamente

Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *