Complejidad de tiempo: O(N) donde N es el número de Nodes en un árbol binario dado
Espacio auxiliar: O(N)Para la entrada dada, este programa imprime el siguiente patrón. La entrada debe ser un número impar.
Ejemplos:
Input : 7 Output : ******* ** ** * * * * * * * * * * * ** ** *******
A continuación se muestra el código que se imprime arriba del patrón:
C++
// CPP program to print diagonal star patterns #include <iostream> using namespace std; void pattern(int n) { // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking boundary conditions and main // diagonal and secondary diagonal conditions if (i == 0 || j == 0 || i == j || i == n - 1 || j == n - 1 || i + j == n - 1) cout << "*"; else cout << " "; } cout << endl; } } // Driver code int main() { // n denotes size which should be odd int n = 7; // Function calling pattern(n); return 0; }
Java
// Java program to print diagonal star patterns import java.util.*; import java.lang.*; public class GfG{ public static void pattern(int n) { // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking boundary conditions // and main diagonal and // secondary diagonal conditions if (i == 0 || j == 0 || i == j || i == n - 1 || j == n - 1 || i + j == n - 1) System.out.print("*"); else System.out.print(" "); } System.out.println(); } } // Driver function public static void main(String argc[]){ // n denotes size which should be odd int n = 7; // Function calling pattern(n); } } // This code is contributed by Sagar Shukla
Python3
# Python 3 program to print # diagonal star patterns def pattern(n) : # Loop denoting rows for i in range(0 , n) : # Loop denoting columns for j in range(0 , n) : # Checking boundary conditions and main # diagonal and secondary diagonal conditions if (i == 0 or j == 0 or i == j or i == n - 1 or j == n - 1 or i + j == n - 1) : print( "*", end="") else : print(" ",end="") print("") # Driver code # n denotes size which should be odd n = 7 # Function calling pattern(n) # This code is contributed by Nikita Tiwari.
C#
// C# program to print diagonal // star patterns using System; public class GfG{ public static void pattern(int n) { // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking boundary conditions, // main diagonal and secondary // diagonal conditions if (i == 0 || j == 0 || i == j || i == n - 1 || j == n - 1 || i + j == n - 1) Console.Write("*"); else Console.Write(" "); } Console.WriteLine(); } } // Driver function public static void Main(){ // n denotes size which should be odd int n = 7; // Function calling pattern(n); } } // This code is contributed by vt_m.
PHP
<?php // php program to print // diagonal star patterns function pattern($n) { // Loop denoting rows for ($i = 0; $i < $n; $i++) { // Loop denoting columns for ($j = 0; $j < $n; $j++) { // Checking boundary conditions // and main diagonal and secondary // diagonal conditions if ($i == 0 || $j == 0 || $i == $j || $i == $n - 1 || $j == $n - 1 || $i + $j == $n - 1) echo "*"; else echo " "; } echo "\n"; } } // Driver code // n denotes size which should be odd $n = 7; // Function calling pattern($n); // This code is contributed by mits ?>
Javascript
<script> // Javascript program to print diagonal star patterns function pattern( n) { // Loop denoting rows for (let i = 0; i < n; i++) { // Loop denoting columns for (let j = 0; j < n; j++) { // Checking boundary conditions // and main diagonal and // secondary diagonal conditions if (i == 0 || j == 0 || i == j || i == n - 1 || j == n - 1 || i + j == n - 1) document.write("*"); else document.write(" "); } document.write("<br/>"); } } // Driver function // n denotes size which should be odd let n = 7; // Function calling pattern(n); // This code is contributed by gauravrajput1 </script>
Producción :
******* ** ** * * * * * * * * * * * ** ** *******
Complejidad temporal: O(n 2 )
Espacio auxiliar: O(1)
Para una entrada dada, este programa imprime el siguiente patrón. La entrada debe ser un número impar.
Ejemplos:
Input : 9 Output : * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
A continuación se muestra el código que se imprime arriba del patrón:
C++
// CPP program to print diagonal pattern #include <iostream> using namespace std; void pattern(int n) { // For printing upper portion int c1 = (n - 1) / 2; // For printing lower portion int c2 = 3 * n / 2 - 1; // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking conditions for printing pattern if (i + j == c1 || i - j == c1 || j - i == c1 || i + j == c2 || i == c1 || j == c1) cout << "*"; else cout << " "; } cout << endl; } } // Driver code int main() { // n denotes size int n = 9; // Function calling pattern(n); return 0; }
Java
// Java program to print diagonal star patterns import java.util.*; import java.lang.*; public class GfG{ public static void pattern(int n) { // For printing upper portion int c1 = (n - 1) / 2; // For printing lower portion int c2 = 3 * n / 2 - 1; // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking conditions for printing // pattern if (i + j == c1 || i - j == c1 || j - i == c1 || i + j == c2 || i == c1 || j == c1) System.out.print("*"); else System.out.print(" "); } System.out.println(); } } // Driver function public static void main(String argc[]){ // n denotes size which should be odd int n = 9; // Function calling pattern(n); } } // This code is contributed by Sagar Shukla
Python3
# Python 3 program to print # diagonal pattern def pattern(n) : # For printing upper portion c1 = (n - 1) // 2 # For printing lower portion c2 = 3 * n // 2 - 1 # Loop denoting rows for i in range(0 , n) : # Loop denoting columns for j in range(0 , n) : # Checking conditions for # printing pattern if (i + j == c1 or i - j == c1 or j - i == c1 or i + j == c2 or i == c1 or j == c1) : print( "*",end = "") else : print(" ",end = "") print("") # Driver code # n denotes size n = 9 # Function calling pattern(n) # This code is contributed by Nikita Tiwari.
C#
// C# program to print // diagonal star patterns using System; class GfG { public static void pattern(int n) { // For printing // upper portion int c1 = (n - 1) / 2; // For printing // lower portion int c2 = 3 * n / 2 - 1; // Loop denoting rows for (int i = 0; i < n; i++) { // Loop denoting columns for (int j = 0; j < n; j++) { // Checking conditions for // printing pattern if (i + j == c1 || i - j == c1 || j - i == c1 || i + j == c2 || i == c1 || j == c1) Console.Write("*"); else Console.Write(" "); } Console.WriteLine(); } } // Driver Code public static void Main() { // n denotes size which // should be odd int n = 9; // Function calling pattern(n); } } // This code is contributed by anuj_67.
PHP
<?php // php program to print // diagonal pattern function pattern($n) { // For printing upper portion $c1 = floor(($n - 1) / 2); // For printing lower portion $c2 = floor(3 * $n / 2 - 1); // Loop denoting rows for ($i = 0; $i < $n; $i++) { // Loop denoting columns for ($j = 0; $j < $n; $j++) { // Checking conditions for // printing pattern if ($i + $j == $c1 || $i - $j == $c1 || $j - $i == $c1 || $i + $j == $c2 || $i == $c1 || $j == $c1) echo "*"; else echo " "; } echo "\n"; } } // Driver code // n denotes size $n = 9; // Function calling pattern($n); // This code is contributed by mits ?>
Javascript
<script> // javascript program to print diagonal star patterns function pattern(n) { // For printing upper portion var c1 = (n - 1) / 2; // For printing lower portion var c2 = parseInt(3 * n / 2 )- 1; // Loop denoting rows for (var i = 0; i < n; i++) { // Loop denoting columns for (var j = 0; j < n; j++) { // Checking conditions for printing // pattern if (i + j == c1 || i - j == c1 || j - i == c1 || i + j == c2 || i == c1 || j == c1) document.write(" *"); else document.write(" "); } document.write("<br/>"); } } // Driver function // n denotes size which should be odd var n = 9; // Function calling pattern(n); // This code contributed by gauravrajput1 </script>
Producción :
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Complejidad temporal: O(n 2 )
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por nikunj_agarwal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA