Requisito previo: programación de CPU | Algoritmo de tiempo restante más largo primero (LRTF)
Hemos proporcionado un proceso con el tiempo de llegada y el tiempo de ráfaga y tenemos que encontrar el tiempo de finalización (CT), el tiempo de respuesta (TAT), el tiempo de respuesta promedio (TAT promedio), el tiempo de espera ( WT), Tiempo promedio de espera (AWT) para los procesos dados.
Ejemplo: considere la siguiente tabla de tiempo de llegada y tiempo de ráfaga para cuatro procesos P1, P2, P3 y P4.
Process Arrival time Burst Time P1 1 ms 2 ms P2 2 ms 4 ms P3 3 ms 6 ms p4 4 ms 8 ms
El diagrama de Gantt será el siguiente a continuación,
Dado que el tiempo de finalización (CT) se puede determinar directamente mediante el diagrama de Gantt, y
Turn Around Time (TAT) = (Completion Time) - (Arrival Time) Also, Waiting Time (WT) = (Turn Around Time) - (Burst Time)
Por lo tanto,
Producción:
Total Turn Around Time = 68 ms So, Average Turn Around Time = 68/4 = 17.00 ms And, Total Waiting Time = 48 ms So, Average Waiting Time = 12.00 ms
Algoritmo –
- Paso 1: Cree una estructura de proceso que contenga todos los campos necesarios como AT (Hora de llegada), BT (Tiempo de ráfaga), CT (Tiempo de finalización), TAT (Tiempo de respuesta), WT (Tiempo de espera).
- Paso 2: Ordenar según el AT;
- Paso 3: encuentre el proceso que tiene el mayor tiempo de ráfaga y ejecútelo para cada unidad individual. Incremente el tiempo total en 1 y reduzca el Burst Time de ese proceso en 1.
- Paso 4: cuando a cualquier proceso le queden 0 BT, actualice el CT (el tiempo de finalización de ese proceso CT será el tiempo total en ese momento).
- Paso 2: Después de calcular el CT para cada proceso, encuentre TAT y WT.
(TAT = CT - AT) (WT = TAT - BT)
Implementación del Algoritmo –
C++
#include <bits/stdc++.h> using namespace std; // creating a structure of a process struct process { int processno; int AT; int BT; // for backup purpose to print in last int BTbackup; int WT; int TAT; int CT; }; // creating a structure of 4 processes struct process p[4]; // variable to find the total time int totaltime = 0; int prefinaltotal = 0; // comparator function for sort() bool compare(process p1, process p2) { // compare the Arrival time of two processes return p1.AT < p2.AT; } // finding the largest Arrival Time among all the available // process at that time int findlargest(int at) { int max = 0, i; for (i = 0; i < 4; i++) { if (p[i].AT <= at) { if (p[i].BT > p[max].BT) max = i; } } // returning the index of the process having the largest BT return max; } // function to find the completion time of each process int findCT() { int index; int flag = 0; int i = p[0].AT; while (1) { if (i <= 4) { index = findlargest(i); } else index = findlargest(4); cout << "Process executing at time " << totaltime << " is: P" << index + 1 << "\t"; p[index].BT -= 1; totaltime += 1; i++; if (p[index].BT == 0) { p[index].CT = totaltime; cout << " Process P" << p[index].processno << " is completed at " << totaltime; } cout << endl; // loop termination condition if (totaltime == prefinaltotal) break; } } int main() { int i; // initializing the process number for (i = 0; i < 4; i++) { p[i].processno = i + 1; } // cout<<"arrival time of 4 processes : "; for (i = 0; i < 4; i++) // taking AT { p[i].AT = i + 1; } // cout<<" Burst time of 4 processes : "; for (i = 0; i < 4; i++) { // assigning {2, 4, 6, 8} as Burst Time to the processes // backup for displaying the output in last // calculating total required time for terminating // the function(). p[i].BT = 2 * (i + 1); p[i].BTbackup = p[i].BT; prefinaltotal += p[i].BT; } // displaying the process before executing cout << "PNo\tAT\tBT\n"; for (i = 0; i < 4; i++) { cout << p[i].processno << "\t"; cout << p[i].AT << "\t"; cout << p[i].BT << "\t"; cout << endl; } cout << endl; // sorting process according to Arrival Time sort(p, p + 4, compare); // calculating initial time when execution starts totaltime += p[0].AT; // calculating to terminate loop prefinaltotal += p[0].AT; findCT(); int totalWT = 0; int totalTAT = 0; for (i = 0; i < 4; i++) { // since, TAT = CT - AT p[i].TAT = p[i].CT - p[i].AT; p[i].WT = p[i].TAT - p[i].BTbackup; // finding total waiting time totalWT += p[i].WT; // finding total turn around time totalTAT += p[i].TAT; } cout << "After execution of all processes ... \n"; // after all process executes cout << "PNo\tAT\tBT\tCT\tTAT\tWT\n"; for (i = 0; i < 4; i++) { cout << p[i].processno << "\t"; cout << p[i].AT << "\t"; cout << p[i].BTbackup << "\t"; cout << p[i].CT << "\t"; cout << p[i].TAT << "\t"; cout << p[i].WT << "\t"; cout << endl; } cout << endl; cout << "Total TAT = " << totalTAT << endl; cout << "Average TAT = " << totalTAT / 4.0 << endl; cout << "Total WT = " << totalWT << endl; cout << "Average WT = " << totalWT / 4.0 << endl; return 0; }
Java
// Java Program to implement // longest remaining time first import java.util.*; class GFG { // creating a class of a process static class process { int processno; int AT; int BT; // for backup purpose to print in last int BTbackup; int WT; int TAT; int CT; } static process[] p = new process[4]; // variable to find the total time static int totaltime = 0; static int prefinaltotal = 0; // finding the largest Arrival Time among all the // available process at that time static int findlargest(int at) { int max = 0, i; for (i = 0; i < 4; i++) { if (p[i].AT <= at) { if (p[i].BT > p[max].BT) max = i; } } // returning the index of the process having the // largest BT return max; } // function to find the completion time of each process static void findCT() { int index; int flag = 0; int i = p[0].AT; while (true) { if (i <= 4) { index = findlargest(i); } else index = findlargest(4); System.out.print("Process executing at time " + totaltime + " is: P" + (index + 1) + "\t"); p[index].BT -= 1; totaltime += 1; i++; if (p[index].BT == 0) { p[index].CT = totaltime; System.out.println( " Process P" + p[index].processno + " is completed at " + totaltime); } System.out.println(); // loop termination condition if (totaltime == prefinaltotal) break; } } public static void main(String[] args) { int i; // initializing the process number for (i = 0; i < 4; i++) { p[i] = new process(); p[i].processno = i + 1; } for (i = 0; i < 4; i++) // taking AT { p[i].AT = i + 1; } for (i = 0; i < 4; i++) { // assigning {2, 4, 6, 8} as Burst Time to the // processes backup for displaying the output in // last calculating total required time for // terminating the function(). p[i].BT = 2 * (i + 1); p[i].BTbackup = p[i].BT; prefinaltotal += p[i].BT; } // displaying the process before executing System.out.print("PNo\tAT\tBT\n"); for (i = 0; i < 4; i++) { System.out.print(p[i].processno + "\t"); System.out.print(p[i].AT + "\t"); System.out.println(p[i].BT + "\t"); } System.out.println(); Arrays.sort(p, (process p1, process p2) -> { return p1.AT - p2.AT; }); // calculating initial time when execution starts totaltime += p[0].AT; // calculating to terminate loop prefinaltotal += p[0].AT; findCT(); int totalWT = 0; int totalTAT = 0; for (i = 0; i < 4; i++) { // since, TAT = CT - AT p[i].TAT = p[i].CT - p[i].AT; p[i].WT = p[i].TAT - p[i].BTbackup; // finding total waiting time totalWT += p[i].WT; // finding total turn around time totalTAT += p[i].TAT; } System.out.print( "After execution of all processes ... \n"); // after all process executes System.out.print("PNo\tAT\tBT\tCT\tTAT\tWT\n"); for (i = 0; i < 4; i++) { System.out.print(p[i].processno + "\t"); System.out.print(p[i].AT + "\t"); System.out.print(p[i].BTbackup + "\t"); System.out.print(p[i].CT + "\t"); System.out.print(p[i].TAT + "\t"); System.out.println(p[i].WT + "\t"); } System.out.println(); System.out.println("Total TAT = " + totalTAT); System.out.println("Average TAT = " + (totalTAT / 4.0)); System.out.println("Total WT = " + totalWT); System.out.println("Average WT = " + totalWT / 4.0); } } // This code is contributed by Karandeep Singh
Python3
# Python3 program to implement # Longest Remaining Time First # creating a structure of 4 processes p = [] for i in range(4): p.append([0, 0, 0, 0, 0, 0, 0]) # variable to find the total time totaltime = 0 prefinaltotal = 0 # finding the largest Arrival Time # among all the available process # at that time def findlargest(at): max = 0 for i in range(4): if (p[i][1] <= at): if (p[i][2] > p[max][2]) : max = i # returning the index of the # process having the largest BT return max # function to find the completion # time of each process def findCT(totaltime): index = 0 flag = 0 i = p[0][1] while (1): if (i <= 4): index = findlargest(i) else: index = findlargest(4) print("Process execute at time ", totaltime, end = " ") print(" is: P", index + 1, sep = "", end = " ") p[index][2] -= 1 totaltime += 1 i += 1 if (p[index][2] == 0): p[index][6] = totaltime print("Process P", p[index][0], sep = "", end = " ") print(" is completed at ", totaltime, end = " ") print() # loop termination condition if (totaltime == prefinaltotal): break # Driver code if __name__ =="__main__": # initializing the process number for i in range(4): p[i][0] = i + 1 for i in range(4): # taking AT p[i][1] = i + 1 for i in range(4): # assigning 2, 4, 6, 8 as Burst Time # to the processes backup for displaying # the output in last calculating total # required time for terminating the function(). p[i][2] = 2 * (i + 1) p[i][3] = p[i][2] prefinaltotal += p[i][2] # displaying the process before executing print("PNo\tAT\tBT") for i in range(4): print(p[i][0], "\t", p[i][1], "\t", p[i][2]) print() # sorting process according to Arrival Time p = sorted(p, key = lambda p:p[1]) # calculating initial time when # execution starts totaltime += p[0][1] # calculating to terminate loop prefinaltotal += p[0][1] findCT(totaltime) totalWT = 0 totalTAT = 0 for i in range(4): # since, TAT = CT - AT p[i][5] = p[i][6]- p[i][1] p[i][4] = p[i][5] - p[i][3] # finding total waiting time totalWT += p[i][4] # finding total turn around time totalTAT += p[i][5] print("\nAfter execution of all processes ... ") # after all process executes print("PNo\tAT\tBT\tCT\tTAT\tWT" ) for i in range(4): print(p[i][0], "\t", p[i][1], "\t", p[i][3], "\t", end = " ") print(p[i][6], "\t", p[i][5], "\t", p[i][4]) print() print("Total TAT = ", totalTAT) print("Average TAT = ", totalTAT / 4.0) print("Total WT = ", totalWT) print("Average WT = ", totalWT / 4.0) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
Producción:
PNo AT BT 1 1 2 2 2 4 3 3 6 4 4 8 Process executing at time 1 is: P1 Process executing at time 2 is: P2 Process executing at time 3 is: P3 Process executing at time 4 is: P4 Process executing at time 5 is: P4 Process executing at time 6 is: P4 Process executing at time 7 is: P3 Process executing at time 8 is: P4 Process executing at time 9 is: P3 Process executing at time 10 is: P4 Process executing at time 11 is: P2 Process executing at time 12 is: P3 Process executing at time 13 is: P4 Process executing at time 14 is: P2 Process executing at time 15 is: P3 Process executing at time 16 is: P4 Process executing at time 17 is: P1 Process P1 is completed at 18 Process executing at time 18 is: P2 Process P2 is completed at 19 Process executing at time 19 is: P3 Process P3 is completed at 20 Process executing at time 20 is: P4 Process P4 is completed at 21 After execution of all processes ... PNo AT BT CT TAT WT 1 1 2 18 17 15 2 2 4 19 17 13 3 3 6 20 17 11 4 4 8 21 17 9 Total TAT = 68 Average TAT = 17 Total WT = 48 Average WT = 12
Publicación traducida automáticamente
Artículo escrito por Rohit_ranjan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA