Dado un hexágono regular de lado a que inscribe un cuadrado que a su vez inscribe un triángulo reuleaux. La tarea es encontrar el área máxima posible de este triángulo de Reuleaux.
Ejemplos:
Input: a = 5 Output: 28.3287 Input: a = 9 Output: 91.7848
Planteamiento : Como el lado del cuadrado inscrito dentro de un hexágono es x = 1.268a . Consulte el Cuadrado más grande que se puede inscribir dentro de un hexágono.
Además, en el triángulo de Reuleaux, h = x = 1.268a .
Entonces, Área del triángulo de Reuleaux , A = 0.70477*h^2 = 0.70477*(1.268a)^2 .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within a hexagon #include <bits/stdc++.h> using namespace std; // Function to find the biggest reuleaux triangle float Area(float a) { // side cannot be negative if (a < 0) return -1; // height of the reuleaux triangle float h = 1.268 * a; // area of the reuleaux triangle float A = 0.70477 * pow(h, 2); return A; } // Driver code int main() { float a = 5; cout << Area(a) << endl; return 0; }
Java
// Java Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within a hexagon import java.io.*; class GFG { // Function to find the biggest reuleaux triangle static float Area(float a) { // side cannot be negative if (a < 0) return -1; // height of the reuleaux triangle float h =(float) 1.268 * a; // area of the reuleaux triangle float A = (float)(0.70477 * Math.pow(h, 2)); return A; } // Driver code public static void main (String[] args) { float a = 5; System.out.println( Area(a)); } } // This code is contributed by anuj_67
Python3
# Python3 Program to find the biggest # Reuleaux triangle inscribed within # in a square which in turn is # inscribed within a hexagon import math # Function to find the biggest # reuleaux triangle def Area(a): # side cannot be negative if (a < 0): return -1 # height of the reuleaux triangle h = 1.268 * a # area of the reuleaux triangle A = 0.70477 * math.pow(h, 2) return A # Driver code a = 5 print(Area(a),end = "\n") # This code is contributed # by Akanksha Rai
C#
// C# Program to find the biggest Reuleaux // triangle inscribed within in a square // which in turn is inscribed within a hexagon using System; class GFG { // Function to find the biggest reuleaux triangle static float Area(float a) { // side cannot be negative if (a < 0) return -1; // height of the reuleaux triangle float h =(float) 1.268 * a; // area of the reuleaux triangle float A = (float)(0.70477 * Math.Pow(h, 2)); return A; } // Driver code public static void Main () { float a = 5; Console.WriteLine(Area(a)); } } // This code is contributed // by Akanksha Rai
PHP
<?php // PHP Program to find the biggest Reuleaux // triangle inscribed within in a square // which in turn is inscribed within a hexagon // Function to find the biggest // reuleaux triangle function Area($a) { // side cannot be negative if ($a < 0) return -1; // height of the reuleaux triangle $h = 1.268 * $a; // area of the reuleaux triangle $A = 0.70477 * pow($h, 2); return $A; } // Driver code $a = 5; echo round(Area($a), 4); // This code is contributed by Ryuga ?>
Javascript
<script> // Javascript Program to find the biggest Reuleaux triangle // inscribed within in a square which in turn // is inscribed within a hexagon // Function to find the biggest reuleaux triangle function Area(a) { // side cannot be negative if (a < 0) return -1; // height of the reuleaux triangle let h = 1.268 * a; // area of the reuleaux triangle let A = 0.70477 * Math.pow(h, 2); return A; } // Driver code let a = 5; document.write(Area(a) + "<br>"); // This code is contributed by Mayank Tyagi </script>
28.3287
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA