Dada una array 2-D mat[][], la tarea es contar el número de componentes conectados en la array. Una componente conexa está formada por todos los elementos iguales que comparten algún lado común con al menos otro elemento de la misma componente.
Ejemplos:
Input: mat[][] = {"bbba", "baaa"} Output: 2 The two connected components are: bbb b AND a aaa Input: mat[][] = {"aabba", "aabba", "aaaca"} Output: 4
Enfoque: por cada celda que no se haya visitado antes de realizar DFS . DFS cubrirá todas las celdas conectadas (arriba, izquierda, derecha y abajo) con el mismo valor. Entonces, la respuesta sería el total de veces que se ejecuta DFS.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define maxRow 500 #define maxCol 500 bool visited[maxRow][maxCol] = { 0 }; // Function that return true if mat[row][col] // is valid and hasn't been visited bool isSafe(string M[], int row, int col, char c, int n, int l) { // If row and column are valid and element // is matched and hasn't been visited then // the cell is safe return (row >= 0 && row < n) && (col >= 0 && col < l) && (M[row][col] == c && !visited[row][col]); } // Function for depth first search void DFS(string M[], int row, int col, char c, int n, int l) { // These arrays are used to get row and column // numbers of 4 neighbours of a given cell int rowNbr[] = { -1, 1, 0, 0 }; int colNbr[] = { 0, 0, 1, -1 }; // Mark this cell as visited visited[row][col] = true; // Recur for all connected neighbours for (int k = 0; k < 4; ++k) if (isSafe(M, row + rowNbr[k], col + colNbr[k], c, n, l)) DFS(M, row + rowNbr[k], col + colNbr[k], c, n, l); } // Function to return the number of // connectewd components in the matrix int connectedComponents(string M[], int n) { int connectedComp = 0; int l = M[0].length(); for (int i = 0; i < n; i++) { for (int j = 0; j < l; j++) { if (!visited[i][j]) { char c = M[i][j]; DFS(M, i, j, c, n, l); connectedComp++; } } } return connectedComp; } // Driver code int main() { string M[] = {"aabba", "aabba", "aaaca"}; int n = sizeof(M)/sizeof(M[0]); cout << connectedComponents(M, n); return 0; }
Java
// Java implementation of the approach class GFG { static final int maxRow = 500; static final int maxCol = 500; static boolean visited[][] = new boolean[maxRow][maxCol]; // Function that return true if mat[row][col] // is valid and hasn't been visited static boolean isSafe(String M[], int row, int col, char c, int n, int l) { // If row and column are valid and element // is matched and hasn't been visited then // the cell is safe return (row >= 0 && row < n) && (col >= 0 && col < l) && (M[row].charAt(col) == c && !visited[row][col]); } // Function for depth first search static void DFS(String M[], int row, int col, char c, int n, int l) { // These arrays are used to get row and column // numbers of 4 neighbours of a given cell int rowNbr[] = {-1, 1, 0, 0}; int colNbr[] = {0, 0, 1, -1}; // Mark this cell as visited visited[row][col] = true; // Recur for all connected neighbours for (int k = 0; k < 4; ++k) { if (isSafe(M, row + rowNbr[k], col + colNbr[k], c, n, l)) { DFS(M, row + rowNbr[k], col + colNbr[k], c, n, l); } } } // Function to return the number of // connectewd components in the matrix static int connectedComponents(String M[], int n) { int connectedComp = 0; int l = M[0].length(); for (int i = 0; i < n; i++) { for (int j = 0; j < l; j++) { if (!visited[i][j]) { char c = M[i].charAt(j); DFS(M, i, j, c, n, l); connectedComp++; } } } return connectedComp; } // Driver code public static void main(String[] args) { String M[] = {"aabba", "aabba", "aaaca"}; int n = M.length; System.out.println(connectedComponents(M, n)); } } // This code contributed by PrinciRaj1992
Python3
# Python3 implementation of the approach import numpy as np maxRow = 500 maxCol = 500 visited = np.zeros((maxCol, maxRow)) # Function that return true if mat[row][col] # is valid and hasn't been visited def isSafe(M, row, col, c, n, l) : # If row and column are valid and element # is matched and hasn't been visited then # the cell is safe return ((row >= 0 and row < n) and (col >= 0 and col < l) and (M[row][col] == c and not visited[row][col])); # Function for depth first search def DFS(M, row, col, c, n, l) : # These arrays are used to get row # and column numbers of 4 neighbours # of a given cell rowNbr = [ -1, 1, 0, 0 ]; colNbr = [ 0, 0, 1, -1 ]; # Mark this cell as visited visited[row][col] = True; # Recur for all connected neighbours for k in range(4) : if (isSafe(M, row + rowNbr[k], col + colNbr[k], c, n, l)) : DFS(M, row + rowNbr[k], col + colNbr[k], c, n, l); # Function to return the number of # connectewd components in the matrix def connectedComponents(M, n) : connectedComp = 0; l = len(M[0]); for i in range(n) : for j in range(l) : if (not visited[i][j]) : c = M[i][j]; DFS(M, i, j, c, n, l); connectedComp += 1; return connectedComp; # Driver code if __name__ == "__main__" : M = ["aabba", "aabba", "aaaca"]; n = len(M) print(connectedComponents(M, n)); # This code is contributed by Ryuga
C#
// C# implementation of the approach using System; class GFG { static readonly int maxRow = 500; static readonly int maxCol = 500; static bool [,]visited = new bool[maxRow,maxCol]; // Function that return true if mat[row,col] // is valid and hasn't been visited static bool isSafe(String []M, int row, int col, char c, int n, int l) { // If row and column are valid and element // is matched and hasn't been visited then // the cell is safe return (row >= 0 && row < n) && (col >= 0 && col < l) && (M[row][col] == c && !visited[row,col]); } // Function for depth first search static void DFS(String []M, int row, int col, char c, int n, int l) { // These arrays are used to get row and column // numbers of 4 neighbours of a given cell int []rowNbr = {-1, 1, 0, 0}; int []colNbr = {0, 0, 1, -1}; // Mark this cell as visited visited[row,col] = true; // Recur for all connected neighbours for (int k = 0; k < 4; ++k) { if (isSafe(M, row + rowNbr[k], col + colNbr[k], c, n, l)) { DFS(M, row + rowNbr[k], col + colNbr[k], c, n, l); } } } // Function to return the number of // connectewd components in the matrix static int connectedComponents(String []M, int n) { int connectedComp = 0; int l = M[0].Length; for (int i = 0; i < n; i++) { for (int j = 0; j < l; j++) { if (!visited[i,j]) { char c = M[i][j]; DFS(M, i, j, c, n, l); connectedComp++; } } } return connectedComp; } // Driver code public static void Main(String[] args) { String []M = {"aabba", "aabba", "aaaca"}; int n = M.Length; Console.WriteLine(connectedComponents(M, n)); } } // This code contributed by Rajput-Ji
Javascript
<script> // JavaScript implementation of the approach var maxRow = 500; var maxCol = 500; var visited = Array(maxRow).fill().map(()=>Array(maxCol).fill(false)); // Function that return true if mat[row][col] // is valid and hasn't been visited function isSafe( M , row , col, c , n , l) { // If row and column are valid and element // is matched and hasn't been visited then // the cell is safe return (row >= 0 && row < n) && (col >= 0 && col < l) && (M[row].charAt(col) == c && !visited[row][col]); } // Function for depth first search function DFS( M , row , col, c , n , l) { // These arrays are used to get row and column // numbers of 4 neighbours of a given cell var rowNbr = [ -1, 1, 0, 0 ]; var colNbr = [ 0, 0, 1, -1 ]; // Mark this cell as visited visited[row][col] = true; // Recur for all connected neighbours for (var k = 0; k < 4; ++k) { if (isSafe(M, row + rowNbr[k], col + colNbr[k], c, n, l)) { DFS(M, row + rowNbr[k], col + colNbr[k], c, n, l); } } } // Function to return the number of // connectewd components in the matrix function connectedComponents( M , n) { var connectedComp = 0; var l = M[0].length; for (var i = 0; i < n; i++) { for (j = 0; j < l; j++) { if (!visited[i][j]) { var c = M[i].charAt(j); DFS(M, i, j, c, n, l); connectedComp++; } } } return connectedComp; } // Driver code var M = [ "aabba", "aabba", "aaaca" ]; var n = M.length; document.write(connectedComponents(M, n)); // This code contributed by gauravrajput1 </script>
4
Complejidad de tiempo: O (fila * columnas)
Espacio auxiliar: O (fila * columnas)
Publicación traducida automáticamente
Artículo escrito por ranjanmonisha233 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA