Dado un árbol de N Nodes, la tarea es encontrar el Node que tiene la máxima profundidad a partir del Node raíz, tomando el Node raíz a profundidad cero. Si hay más de 1 Node de profundidad máxima, busque el que tenga el valor más pequeño.
Ejemplos:
Input: 1 / \ 2 3 / \ 4 5 Output: 4 Explanation: For this tree: Height of Node 1 - 0, Height of Node 2 - 1, Height of Node 3 - 1, Height of Node 4 - 2, Height of Node 5 - 2. Hence, the nodes whose height is maximum are 4 and 5, out of which 4 is minimum valued. Input: 1 / 2 / 3 Output: 3 Explanation: For this tree: Height of Node 1 - 0, Height of Node 2 - 1, Height of Node 3 - 2 Hence, the node whose height is maximum is 3.
Acercarse:
- La idea es usar la búsqueda en profundidad primero (DFS) en el árbol y para cada Node, verifique la altura de cada Node a medida que avanzamos hacia abajo en el árbol.
- Compruebe si es el máximo hasta ahora o no y si tiene una altura igual al valor máximo, entonces es el Node de valor mínimo o no.
- En caso afirmativo, actualice la altura máxima hasta el momento y el valor del Node en consecuencia.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of for // the above problem #include <bits/stdc++.h> using namespace std; #define MAX 100000 vector<int> graph[MAX + 1]; // To store the height of each node int maxHeight, minNode; // Function to perform dfs void dfs(int node, int parent, int h) { // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); } } // Driver code int main() { // Number of nodes int N = 5; // Edges of the tree graph[1].push_back(2); graph[1].push_back(3); graph[2].push_back(4); graph[2].push_back(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); cout << minNode << "\n"; return 0; }
Java
// Java implementation of for // the above problem import java.util.*; class GFG{ static final int MAX = 100000; @SuppressWarnings("unchecked") static Vector<Integer>[] graph = new Vector[MAX + 1]; // To store the height of each node static int maxHeight, minNode; // Function to perform dfs static void dfs(int node, int parent, int h) { // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for(int to : graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); } } // Driver code public static void main(String[] args) { // Number of nodes int N = 5; for(int i = 0; i < graph.length; i++) graph[i] = new Vector<Integer>(); // Edges of the tree graph[1].add(2); graph[1].add(3); graph[2].add(4); graph[2].add(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); System.out.print(minNode + "\n"); } } // This code is contributed by sapnasingh4991
Python3
# Python3 implementation of for # the above problem MAX = 100000 graph = [[] for i in range(MAX + 1)] # To store the height of each node maxHeight = 0 minNode = 0 # Function to perform dfs def dfs(node, parent, h): global minNode, maxHeight # Store the height of node height = h if (height > maxHeight): maxHeight = height minNode = node elif (height == maxHeight and minNode > node): minNode = node for to in graph[node]: if to == parent: continue dfs(to, node, h + 1) # Driver code if __name__=="__main__": # Number of nodes N = 5 # Edges of the tree graph[1].append(2) graph[1].append(3) graph[2].append(4) graph[2].append(5) maxHeight = 0 minNode = 1 dfs(1, 1, 0) print(minNode) # This code is contributed by rutvik_56
C#
// C# implementation of for // the above problem using System; using System.Collections.Generic; public class GFG{ static readonly int MAX = 100000; static List<int>[] graph = new List<int>[MAX + 1]; // To store the height of each node static int maxHeight, minNode; // Function to perform dfs static void dfs(int node, int parent, int h) { // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; foreach(int to in graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); } } // Driver code public static void Main(String[] args) { for(int i = 0; i < graph.Length; i++) graph[i] = new List<int>(); // Edges of the tree graph[1].Add(2); graph[1].Add(3); graph[2].Add(4); graph[2].Add(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); Console.Write(minNode + "\n"); } } // This code is contributed by shikhasingrajput
Javascript
<script> // Javascript implementation of for the above problem let MAX = 100000; let graph = new Array(MAX + 1); // To store the height of each node let maxHeight, minNode; // Function to perform dfs function dfs(node, parent, h) { // Store the height of node let height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for(let to = 0; to < graph[node].length; to++) { if (graph[node][to] == parent) continue; dfs(graph[node][to], node, h + 1); } } for(let i = 0; i < graph.length; i++) graph[i] = []; // Edges of the tree graph[1].push(2); graph[1].push(3); graph[2].push(4); graph[2].push(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); document.write(minNode + "</br>"); // This code is contributed by decode2207. </script>
Producción:
4
Publicación traducida automáticamente
Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA