Tenemos una array arr[0 . . . n-1]. Hay dos tipos de consultas
- Encuentre el XOR de elementos del índice l a r donde 0 <= l <= r <= n-1
- Cambia el valor de un elemento específico de la array a un nuevo valor x. Necesitamos hacer arr[i] = x donde 0 <= i <= n-1.
Habrá un total de q consultas.
Restricción de entrada
n <= 10^5, q <= 10^5
Solución 1: una solución simple es ejecutar un ciclo de l a r y calcular xor de elementos en un rango dado. Para actualizar un valor, simplemente haga arr[i] = x. La primera operación toma el tiempo O(n) y la segunda operación toma el tiempo O(1). En el peor de los casos, la complejidad del tiempo es O (n * q) para q consultas
, lo que llevará mucho tiempo para n ~ 10 ^ 5 y q ~ 10 ^ 5. Por lo tanto, esta solución excederá el límite de tiempo.
Solución 2: Otra solución es almacenar xor en todos los rangos posibles, pero hay O (n ^ 2) rangos posibles, por lo tanto, con n ~ 10 ^ 5 excederá la complejidad del espacio, por lo tanto, sin considerar la complejidad del tiempo, podemos afirmar que esta solución no lo hará trabajar.
Solución 3 (árbol de segmentos):
Requisito previo : Árbol de segmentos
Construimos un árbol de segmentos de una array dada de modo que los elementos de la array estén en las hojas y los Nodes internos almacenen XOR de las hojas cubiertas por ellos.
Implementación:
C++
// C++ program to show segment tree operations like construction, // query and update #include <iostream> #include <math.h> using namespace std; // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } /* A recursive function to get the xor of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getXorUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the xor of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return getXorUtil(st, ss, mid, qs, qe, 2*si+1) ^ getXorUtil(st, mid+1, se, qs, qe, 2*si+2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getXorUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return; // If the input index is in range of this node, then update // the value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2*si + 1); updateValueUtil(st, mid+1, se, i, diff, 2*si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { cout <<"Invalid Input"; return; } // Get the difference between new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n-1, i, diff, 0); } // Return xor of elements in range from index qs (query start) // to qe (query end). It mainly uses getXorUtil() int getXor(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { cout <<"Invalid Input"; return -1; } return getXorUtil(st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then recur for left and // right subtrees and store the xor of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) ^ constructSTUtil(arr, mid+1, se, st, si*2+2); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for segment tree //Height of segment tree int x = (int)(ceil(log2(n))); //Maximum size of segment tree int max_size = 2*(int)pow(2, x) - 1; // Allocate memory int *st = (int *)malloc(sizeof(int)*max_size); // Fill the allocated memory st constructSTUtil(arr, 0, n-1, st, 0); // Return the constructed segment tree return st; } // Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]); // Build segment tree from given array int *st = constructST(arr, n); // Print xor of values in array from index 1 to 3 cout <<"Xor of values in given range = "<< getXor(st, n, 1, 3) << endl; // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, st, n, 1, 10); // Find xor after the value is updated cout <<"Updated xor of values in given range = " << getXor(st, n, 1, 3) << endl; return 0; } // This code is contributed by shivanisinghss2110
C
// C program to show segment tree operations like construction, // query and update #include <stdio.h> #include <stdlib.h> #include <math.h> // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } /* A recursive function to get the xor of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getXorUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the xor of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return getXorUtil(st, ss, mid, qs, qe, 2*si+1) ^ getXorUtil(st, mid+1, se, qs, qe, 2*si+2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getXorUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return; // If the input index is in range of this node, then update // the value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2*si + 1); updateValueUtil(st, mid+1, se, i, diff, 2*si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { printf("Invalid Input"); return; } // Get the difference between new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n-1, i, diff, 0); } // Return xor of elements in range from index qs (query start) // to qe (query end). It mainly uses getXorUtil() int getXor(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { printf("Invalid Input"); return -1; } return getXorUtil(st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then recur for left and // right subtrees and store the xor of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) ^ constructSTUtil(arr, mid+1, se, st, si*2+2); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for segment tree //Height of segment tree int x = (int)(ceil(log2(n))); //Maximum size of segment tree int max_size = 2*(int)pow(2, x) - 1; // Allocate memory int *st = (int *)malloc(sizeof(int)*max_size); // Fill the allocated memory st constructSTUtil(arr, 0, n-1, st, 0); // Return the constructed segment tree return st; } // Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]); // Build segment tree from given array int *st = constructST(arr, n); // Print xor of values in array from index 1 to 3 printf("Xor of values in given range = %d\n", getXor(st, n, 1, 3)); // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, st, n, 1, 10); // Find xor after the value is updated printf("Updated xor of values in given range = %d\n", getXor(st, n, 1, 3)); return 0; }
Java
// Java program to show segment tree operations // like construction, query and update class GFG{ // A utility function to get the middle // index from corner indexes. static int getMid(int s, int e) { return s + (e - s) / 2; } /* * A recursive function to get the xor of values * in given range of the array. * The following are parameters for this function. * * st --> Pointer to segment tree * si --> Index of current node in the segment tree. Initially * 0 is passed as root is always at index 0 * ss & se --> Starting and ending indexes of the segment * represented by current node, i.e., st[si] * qs & qe --> Starting and ending indexes of query range */ static int getXorUtil(int[] st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of // given range, then return the xor of // the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps // with the given range int mid = getMid(ss, se); return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^ getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2); } /* * A recursive function to update the nodes which have the given * index in their range. The following are parameters * st, si, ss and se are same as getXorUtil() * i --> index of the element to be updated. This index is in * input array. * diff --> Value to be added to all nodes which have i in range */ static void updateValueUtil(int[] st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the // range of this segment if (i < ss || i > se) return; // If the input index is in range of this node, // then update the value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input array // and segment tree. It uses updateValueUtil() // to update the value in segment tree static void updateValue(int[] arr, int[] st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { System.out.println("Invalid Input"); return; } // Get the difference between new // value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return xor of elements in range from // index qs (query start) to qe (query end). // It mainly uses getXorUtil() static int getXor(int[] st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { System.out.println("Invalid Input"); return -1; } return getXorUtil(st, 0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment // Tree for array[ss..se]. si is index of current // node in segment tree st static int constructSTUtil(int arr[], int ss, int se, int[] st, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, // then recur for left and right subtrees // and store the xor of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^ constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } /* * Function to construct segment tree from * given array. This function allocates memory * for segment tree and calls constructSTUtil() * to fill the allocated memory */ static int[] constructST(int arr[], int n) { // Allocate memory for segment tree // Height of segment tree int x = (int)(Math.ceil(Math.log(n) / Math.log(2))); // Maximum size of segment tree int max_size = 2 * (int) Math.pow(2, x) - 1; // Allocate memory int[] st = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver code public static void main(String[] args) { int[] arr = { 1, 3, 5, 7, 9, 11 }; int n = arr.length; // Build segment tree from given array int[] st = constructST(arr, n); // Print xor of values in array from index 1 to 3 System.out.printf("Xor of values in given " + "range = %d\n", getXor(st, n, 1, 3)); // Update: set arr[1] = 10 and update // corresponding segment tree nodes updateValue(arr, st, n, 1, 10); // Find xor after the value is updated System.out.printf("Updated xor of values in " + "given range = %d\n", getXor(st, n, 1, 3)); } } // This code is contributed by sanjeev2552
Python3
# Python program to show segment tree operations # like construction, query and update import math as Math # A utility function to get the middle # index from corner indexes. def getMid(s, e): return s + ((e - s) // 2) def getXorUtil(st, ss, se, qs, qe, si): # If segment of this node is a part of # given range, then return the xor of # the segment if (qs <= ss and qe >= se): return st[si] # If segment of this node is # outside the given range if (se < qs or ss > qe): return 0 # If a part of this segment overlaps # with the given range mid = getMid(ss, se) return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^ getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2) def updateValueUtil(st, ss, se, i, diff, si): # Base Case: If the input index lies outside the # range of this segment if (i < ss or i > se): return # If the input index is in range of this node, # then update the value of the node and its children st[si] = st[si] + diff if (se != ss): mid = getMid(ss, se) updateValueUtil(st, ss, mid, i, diff, 2 * si + 1) updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2) # The function to update a value in input array # and segment tree. It uses updateValueUtil() # to update the value in segment tree def updateValue(arr, st, n, i, new_val): # Check for erroneous input index if (i < 0 or i > n - 1): print("Invalid Input") return # Get the difference between new # value and old value diff = new_val - arr[i] # Update the value in array arr[i] = new_val # Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0) # Return xor of elements in range from # index qs (query start) to qe (query end). # It mainly uses getXorUtil() def getXor(st, n, qs, qe): # Check for erroneous input values if (qs < 0 or qe > n - 1 or qs > qe): print("Invalid Input") return -1 return getXorUtil(st, 0, n - 1, qs, qe, 0) # A recursive function that constructs Segment # Tree for array[ss..se]. si is index of current # node in segment tree st def constructSTUtil(arr, ss, se, st, si): # If there is one element in array, store # it in current node of segment tree and return if (ss == se): st[si] = arr[ss] return arr[ss] # If there are more than one elements, # then recur for left and right subtrees # and store the xor of values in this node mid = getMid(ss, se) st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^ constructSTUtil(arr, mid + 1, se, st, si * 2 + 2) return st[si] """ * Function to construct segment tree from * given array. This function allocates memory * for segment tree and calls constructSTUtil() * to fill the allocated memory """ def constructST(arr, n): # Allocate memory for segment tree # Height of segment tree x = (Math.ceil(Math.log(n) / Math.log(2))) # Maximum size of segment tree max_size = Math.floor(2 * (Math.pow(2, x)) - 1) # Allocate memory st = [0] * max_size # Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0) # Return the constructed segment tree return st arr = [1, 3, 5, 7, 9, 11] n = len(arr) # Build segment tree from given array st = constructST(arr, n) # Print xor of values in array from index 1 to 3 print(f"Xor of values in given range = {getXor(st, n, 1, 3)}") # Update: set arr[1] = 10 and update # corresponding segment tree nodes updateValue(arr, st, n, 1, 10) # Find xor after the value is updated print(f"Updated xor of values in given range = {getXor(st, n, 1, 3)}") # This code is contributed by Saurabh Jaiswal
Javascript
<script> // Javascript program to show segment tree operations // like construction, query and update // A utility function to get the middle // index from corner indexes. function getMid(s, e) { return s + parseInt((e - s) / 2, 10); } function getXorUtil(st, ss, se, qs, qe, si) { // If segment of this node is a part of // given range, then return the xor of // the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps // with the given range let mid = getMid(ss, se); return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^ getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2); } function updateValueUtil(st, ss, se, i, diff, si) { // Base Case: If the input index lies outside the // range of this segment if (i < ss || i > se) return; // If the input index is in range of this node, // then update the value of the node and its children st[si] = st[si] + diff; if (se != ss) { let mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input array // and segment tree. It uses updateValueUtil() // to update the value in segment tree function updateValue(arr, st, n, i, new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { document.write("Invalid Input"); return; } // Get the difference between new // value and old value let diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return xor of elements in range from // index qs (query start) to qe (query end). // It mainly uses getXorUtil() function getXor(st, n, qs, qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { document.write("Invalid Input"); return -1; } return getXorUtil(st, 0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment // Tree for array[ss..se]. si is index of current // node in segment tree st function constructSTUtil(arr, ss, se, st, si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, // then recur for left and right subtrees // and store the xor of values in this node let mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^ constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; } /* * Function to construct segment tree from * given array. This function allocates memory * for segment tree and calls constructSTUtil() * to fill the allocated memory */ function constructST(arr, n) { // Allocate memory for segment tree // Height of segment tree let x = (Math.ceil(Math.log(n) / Math.log(2))); // Maximum size of segment tree let max_size = 2 * parseInt(Math.pow(2, x), 10) - 1; // Allocate memory let st = new Array(max_size); st.fill(0); // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } let arr = [ 1, 3, 5, 7, 9, 11 ]; let n = arr.length; // Build segment tree from given array let st = constructST(arr, n); // Print xor of values in array from index 1 to 3 document.write("Xor of values in given " + "range = " + getXor(st, n, 1, 3) + "</br>"); // Update: set arr[1] = 10 and update // corresponding segment tree nodes updateValue(arr, st, n, 1, 10); // Find xor after the value is updated document.write("Updated xor of values in " + "given range = " + getXor(st, n, 1, 3) + "</br>"); // This code is contributed by divyeshrabadiya07. </script>
Xor of values in given range = 1 Updated xor of values in given range = 8
Complejidad de tiempo y espacio:
La complejidad del tiempo para la construcción del árbol es O(n).
Hay un total de 2n-1 Nodes, y el valor de cada Node se calcula solo una vez en la construcción del árbol.
La complejidad del tiempo para consultar es O (log n).
La complejidad temporal de la actualización también es O(log n).
La complejidad del tiempo total es: O(n) para la construcción + O(log n) para cada consulta = O(n) + O(n * log n) = O(n * log n)
Complejidad de Tiempo: O(n * log n)
Espacio Auxiliar: O(n)
Este artículo es una contribución de Pratik Chhajer . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA