Árboles de segmentos | (Producto de Rango Módulo m dado)

Consideremos el siguiente problema para comprender los árboles de segmentos.
Tenemos una array arr[0 . . . n-1]. Deberíamos ser capaces de 
1 Encontrar el producto de elementos de índice l a r donde 0 <= l <= r <= n-1 tomar su módulo por un entero m.
2 Cambiar el valor de un elemento específico de la array a un nuevo valor x. Necesitamos hacer arr[i] = x donde 0 <= i <= n-1.

Una solución simple es ejecutar un ciclo de l a r y calcular el producto de los elementos en un rango dado y modularlo por m. Para actualizar un valor, simplemente haga arr[i] = x. La primera operación toma el tiempo O(n) y la segunda operación toma el tiempo O(1).

Otra solución es crear dos arreglos y almacenar el producto módulo m desde el inicio hasta l-1 en el primer arreglo y el producto desde r+1 hasta el final del arreglo módulo m en otro arreglo. El producto de un rango dado ahora se puede calcular en tiempo O(1), pero la operación de actualización ahora toma tiempo O(n). 
Digamos que el producto de todos los elementos sea P, entonces el producto P de un rango dado de l a r se puede calcular como: 
P: Producto de todos los elementos de la array módulo m. 
A: Producto de todos los elementos hasta l-1 módulo m. 
B: Producto de todos los elementos hasta r+1 módulo m.
PDT = P*(modInverse(A))*(modInverse(B))
Esto funciona bien si la cantidad de operaciones de consulta es grande y hay muy pocas actualizaciones. 

Solución de  árbol de segmentos
: si el número de consultas y actualizaciones es igual, podemos realizar ambas operaciones en tiempo O (log n). Podemos usar un árbol de segmentos para hacer ambas operaciones en tiempo O (Iniciar sesión).

Representación de árboles de segmentos 
1. Los Nodes hoja son los elementos del arreglo de entrada. 
2. Cada Node interno representa alguna fusión de los Nodes hoja. La fusión puede ser diferente para diferentes problemas. Para este problema, la fusión es producto de las hojas debajo de un Node.
Se utiliza una representación de array de árbol para representar árboles de segmento. Para cada Node en el índice i, el hijo izquierdo está en el índice 2*i+1, el hijo derecho en 2*i+2 y el padre está en (i-1)/2. 

Consulta de producto de rango dado 
Una vez que se construye el árbol, cómo obtener el producto utilizando el árbol de segmento construido. El siguiente es un algoritmo para obtener el producto de los elementos.

int getPdt(node, l, r) 
{
   if range of node is within l and r
        return value in node
   else if range of node is completely outside l and r
        return 1
   else
    return (getPdt(node's left child, l, r)%mod * 
           getPdt(node's right child, l, r)%mod)%mod
}

Actualizar un valor 
Al igual que la construcción de árboles y las operaciones de consulta, la actualización también se puede realizar de forma recursiva. Se nos proporciona un índice que debe actualizarse. Comenzamos desde la raíz del árbol de segmentos, multiplicamos el producto del rango con el valor nuevo y dividimos el producto del rango con el valor anterior. Si un Node no tiene un índice dado en su rango, no hacemos ningún cambio en ese Node. 

Implementación: 
A continuación se muestra la implementación del árbol de segmentos. El programa implementa la construcción de un árbol de segmentos para cualquier array dada. También implementa operaciones de consulta y actualización. 

C++

// C++ program to show segment tree operations like
// construction, query and update
#include <bits/stdc++.h>
#include <math.h>
using namespace std;
int mod = 1000000000;
  
// A utility function to get the middle index from
// corner indexes.
int getMid(int s, int e) {  return s + (e -s)/2;  }
  
/*  A recursive function to get the Pdt of values
    in given range of the array. The following are
    parameters for this function.
  
    st    --> Pointer to segment tree
    si    --> Index of current node in the segment tree.
              Initially 0 is passed as root is always
              at index 0
    ss & se  --> Starting and ending indexes of the
                 segment represented by current node,
                 i.e., st[si]
    qs & qe  --> Starting and ending indexes of query
                 range */
int getPdtUtil(int *st, int ss, int se, int qs, int qe,
                                                int si)
{
    // If segment of this node is a part of given
    // range, then return the Pdt of the segment
    if (qs <= ss && qe >= se)
        return st[si];
  
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 1;
  
    // If a part of this segment overlaps with the
    // given range
    int mid = getMid(ss, se);
    return (getPdtUtil(st, ss, mid, qs, qe, 2*si+1)%mod *
           getPdtUtil(st, mid+1, se, qs, qe, 2*si+2)%mod)%mod;
}
  
/* A recursive function to update the nodes which have
   the given index in their range. The following are
   parameters
    st, si, ss and se are same as getPdtUtil()
    i    --> index of the element to be updated. 
             This index is in input array.*/   
void updateValueUtil(int *st, int ss, int se, int i,
                        int prev_val, int new_val, int si)
{
    // Base Case: If the input index lies outside
    // the range of  this segment
    if (i < ss || i > se)
        return;
  
    // If the input index is in range of this node, then 
    // update the value of the node and its children
    st[si] = (st[si]*new_val)/prev_val;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, prev_val,
                                new_val, 2*si + 1);
        updateValueUtil(st, mid+1, se, i, prev_val,
                                new_val, 2*si + 2);
    }
}
  
// The function to update a value in input array
// and segment tree. It uses updateValueUtil() to
// update the value in segment tree
void updateValue(int arr[], int *st, int n, int i,
                                      int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n-1)
    {
        cout<<"Invalid Input";
        return;
    }
    int temp = arr[i];
 
    // Update the value in array
    arr[i] = new_val;
  
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n-1, i, temp, new_val, 0);
}
  
// Return Pdt of elements in range from index qs
// (query start)to qe (query end).  It mainly
// uses getPdtUtil()
int getPdt(int *st, int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        cout<<"Invalid Input";
        return -1;
    }
  
    return getPdtUtil(st, 0, n-1, qs, qe, 0);
}
  
// A recursive function that constructs Segment Tree
// for array[ss..se]. si is index of current node
// in segment tree st
int constructSTUtil(int arr[], int ss, int se,
                              int *st, int si)
{
    // If there is one element in array, store it
    // in current node of segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
  
    // If there are more than one elements, then
    // recur for left and right subtrees and store
    // the Pdt of values in this node
    int mid = getMid(ss, se);
    st[si] =  (constructSTUtil(arr, ss, mid, st, si*2+1)%mod *
              constructSTUtil(arr, mid+1, se, st, si*2+2)%mod)%mod;
    return st[si];
}
  
/* Function to construct segment tree from given array.
   This function allocates memory for segment tree and
   calls constructSTUtil() to fill the allocated memory */
int *constructST(int arr[], int n)
{
    // Allocate memory for segment tree
  
    // Height of segment tree
    int x = (int)(ceil(log2(n)));
  
    // Maximum size of segment tree
    int max_size = 2*(int)pow(2, x) - 1;
  
    // Allocate memory
    int *st = new int[max_size];
  
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, st, 0);
  
    // Return the constructed segment tree
    return st;
}
  
// Driver program to test above functions
int main()
{
    int arr[] = {1, 2, 3, 4, 5, 6};
    int n = sizeof(arr)/sizeof(arr[0]);
 
    // Build segment tree from given array
    int *st = constructST(arr, n);
  
    // Print Product of values in array from index 1 to 3
    cout << "Product of values in given range = "
         << getPdt(st, n, 1, 3) << endl;
            
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, st, n, 1, 10);
  
    // Find Product after the value is updated
    cout << "Updated Product of values in given range = "
         << getPdt(st, n, 1, 3) << endl;
    return 0;
}

Java

// Java program to show segment tree operations
// like construction, query and update
class GFG{
 
static final int mod = 1000000000;
 
// A utility function to get the middle
// index from corner indexes.
static int getMid(int s, int e)
{
    return s + (e - s) / 2;
}
 
/*
 * A recursive function to get the Pdt of values
 * in given range of the array.
 * The following are parameters for this function.
 *
 * st --> Pointer to segment tree
 * si --> Index of current node in the segment tree.
 *        Initially 0 is passed as root is always
 *        at index 0
 * ss & se --> Starting and ending indexes of the
 *             segment represented by current node,
 *             i.e., st[si]
 * qs & qe --> Starting and ending indexes of query range
 */
static int getPdtUtil(int[] st, int ss, int se,
                      int qs, int qe, int si)
{
     
    // If segment of this node is a part of given
    // range, then return the Pdt of the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is outside
    // the given range
    if (se < qs || ss > qe)
        return 1;
 
    // If a part of this segment overlaps
    // with the given range
    int mid = getMid(ss, se);
    return (getPdtUtil(st, ss, mid, qs,
                       qe, 2 * si + 1) % mod *
           getPdtUtil(st, mid + 1, se, qs,
                      qe, 2 * si + 2) % mod) % mod;
}
 
/*
 * A recursive function to update the nodes which have
 * the given index in their range. The following are
 * parameters
 * st, si, ss and se are same as getPdtUtil()
 * i --> index of the element to be updated.
 *        This index is in input array.
 */
static void updateValueUtil(int[] st, int ss, int se,
                            int i, int prev_val,
                            int new_val, int si)
{
     
    // Base Case: If the input index lies outside
    // the range of this segment
    if (i < ss || i > se)
        return;
 
    // If the input index is in range of this node, then
    // update the value of the node and its children
    st[si] = (st[si] * new_val) / prev_val;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, prev_val,
                        new_val, 2 * si + 1);
        updateValueUtil(st, mid + 1, se, i, prev_val,
                        new_val, 2 * si + 2);
    }
}
 
// The function to update a value in input array
// and segment tree. It uses updateValueUtil() to
// update the value in segment tree
static void updateValue(int arr[], int[] st, int n,
                        int i, int new_val)
{
     
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        System.out.println("Invalid Input");
        return;
    }
    int temp = arr[i];
 
    // Update the value in array
    arr[i] = new_val;
 
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i,
                    temp, new_val, 0);
}
 
// Return Pdt of elements in range from index qs
// (query start)to qe (query end). It mainly
// uses getPdtUtil()
static int getPdt(int[] st, int n, int qs, int qe)
{
     
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe)
    {
        System.out.println("Invalid Input");
        return -1;
    }
 
    return getPdtUtil(st, 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment Tree
// for array[ss..se]. si is index of current node
// in segment tree st
static int constructSTUtil(int arr[], int ss, int se,
                           int[] st, int si)
{
     
    // If there is one element in array, store it
    // in current node of segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one elements, then
    // recur for left and right subtrees and store
    // the Pdt of values in this node
    int mid = getMid(ss, se);
    st[si] = (constructSTUtil(arr, ss, mid, st,
                              si * 2 + 1) % mod *
              constructSTUtil(arr, mid + 1, se, st,
                              si * 2 + 2) % mod) % mod;
    return st[si];
}
 
/*
 * Function to construct segment tree from
 * given array. This function allocates memory
 * for segment tree and calls constructSTUtil()
 * to fill the allocated memory
 */
static int[] constructST(int arr[], int n)
{
     
    // Allocate memory for segment tree
 
    // Height of segment tree
    int x = (int)(Math.ceil(Math.log(n) /
                            Math.log(2)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int)Math.pow(2, x) - 1;
 
    // Allocate memory
    int[] st = new int[max_size];
 
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n - 1, st, 0);
 
    // Return the constructed segment tree
    return st;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = arr.length;
 
    // Build segment tree from given array
    int[] st = constructST(arr, n);
 
    // Print Product of values in array from
    // index 1 to 3
    System.out.printf("Product of values in " +
                      "given range = %d\n",
                      getPdt(st, n, 1, 3));
 
    // Update: set arr[1] = 10 and update
    // corresponding segment tree nodes
    updateValue(arr, st, n, 1, 10);
 
    // Find Product after the value is updated
    System.out.printf("Updated Product of values " +
                      "in given range = %d\n",
                      getPdt(st, n, 1, 3));
}
}
 
// This code is contributed by sanjeev2552

Python3

# Python3 program to show segment tree operations like
# construction, query and update
from math import ceil,log
mod = 1000000000
 
# A utility function to get the middle index from
# corner indexes.
def getMid(s, e):
    return s + (e -s)//2
 
"""A recursive function to get the Pdt of values
    in given range of the array. The following are
    parameters for this function.
 
    st --> Pointer to segment tree
    si --> Index of current node in the segment tree.
            Initially 0 is passed as root is always
            at index 0
    ss & se --> Starting and ending indexes of the
                segment represented by current node,
                i.e., st[si]
    qs & qe --> Starting and ending indexes of query
                range"""
def getPdtUtil(st, ss, se, qs, qe,si):
     
    # If segment of this node is a part of given
    # range, then return the Pdt of the segment
    if (qs <= ss and qe >= se):
        return st[si]
 
    # If segment of this node is outside the given range
    if (se < qs or ss > qe):
        return 1
 
    # If a part of this segment overlaps with the
    # given range
    mid = getMid(ss, se)
    return (getPdtUtil(st, ss, mid, qs, qe, 2*si+1)%mod*
        getPdtUtil(st, mid+1, se, qs, qe, 2*si+2)%mod)%mod
"""A recursive function to update the nodes which have
the given index in their range. The following are
parameters
    st, si, ss and se are same as getPdtUtil()
    i --> index of the element to be updated.
            This index is in input array."""
def updateValueUtil(st, ss, se, i, prev_val, new_val, si):
     
    # Base Case: If the input index lies outside
    # the range of this segment
    if (i < ss or i > se):
        return
 
    # If the input index is in range of this node, then
    # update the value of the node and its children
    st[si] = (st[si]*new_val)//prev_val
    if (se != ss):
        mid = getMid(ss, se)
        updateValueUtil(st, ss, mid, i, prev_val,
                                new_val, 2*si + 1)
        updateValueUtil(st, mid+1, se, i, prev_val,
                                new_val, 2*si + 2)
 
 
# The function to update a value in input array
# and segment tree. It uses updateValueUtil() to
# update the value in segment tree
def updateValue(arr, st, n, i, new_val):
     
    # Check for erroneous input index
    if (i < 0 or i > n-1):
        cout<<"Invalid Input"
        return
    temp = arr[i]
 
    # Update the value in array
    arr[i] = new_val
 
    # Update the values of nodes in segment tree
    updateValueUtil(st, 0, n-1, i, temp, new_val, 0)
 
# Return Pdt of elements in range from index qs
# (query start)to qe (query end). It mainly
# uses getPdtUtil()
def getPdt(st, n, qs, qe):
     
    # Check for erroneous input values
    if (qs < 0 or qe > n-1 or qs > qe):
        print("Invalid Input")
        return -1
 
    return getPdtUtil(st, 0, n-1, qs, qe, 0)
 
# A recursive function that constructs Segment Tree
# for array[ss..se]. si is index of current node
# in segment tree st
def constructSTUtil(arr, ss, se,st, si):
     
    # If there is one element in array, store it
    # in current node of segment tree and return
    if (ss == se):
        st[si] = arr[ss]
        return arr[ss]
 
    # If there are more than one elements, then
    # recur for left and right subtrees and store
    # the Pdt of values in this node
    mid = getMid(ss, se)
    st[si] = (constructSTUtil(arr, ss, mid, st, si*2+1)%mod*
            constructSTUtil(arr, mid+1, se, st, si*2+2)%mod)%mod
    return st[si]
 
 
""" Function to construct segment tree from given array.
This function allocates memory for segment tree and
calls constructSTUtil() to fill the allocated memory
"""
def constructST(arr, n):
    # Allocate memory for segment tree
 
    # Height of segment tree
    x = (ceil(log(n,2)))
 
    # Maximum size of segment tree
    max_size = 2*pow(2, x) - 1
 
    # Allocate memory
    st = [0]*max_size
 
    # Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, st, 0)
 
    # Return the constructed segment tree
    return st
 
# Driver program to test above functions
if __name__ == '__main__':
    arr=[1, 2, 3, 4, 5, 6]
    n = len(arr)
 
    # Build segment tree from given array
    st = constructST(arr, n)
 
    # Print Product of values in array from index 1 to 3
    print("Product of values in given range = ",getPdt(st, n, 1, 3))
 
    # Update: set arr[1] = 10 and update corresponding
    # segment tree nodes
    updateValue(arr, st, n, 1, 10)
 
    # Find Product after the value is updated
    print("Updated Product of values in given range = ",getPdt(st, n, 1, 3))
 
# This code is contributed by mohit kumar 29
  

C#

// C# program to show segment tree operations
// like construction, query and update
using System;
class GFG
{
    static int mod = 1000000000;
   
    // A utility function to get the middle
    // index from corner indexes.
    public static int getMid(int s, int e)
    {
        return s + (e - s) / 2;
    }
      
/*
 * A recursive function to get the Pdt of values
 * in given range of the array.
 * The following are parameters for this function.
 *
 * st --> Pointer to segment tree
 * si --> Index of current node in the segment tree.
 *        Initially 0 is passed as root is always
 *        at index 0
 * ss & se --> Starting and ending indexes of the
 *             segment represented by current node,
 *             i.e., st[si]
 * qs & qe --> Starting and ending indexes of query range
 */
    public static int getPdtUtil(int[] st, int ss,
                                 int se,int qs,
                                 int qe, int si)
    {
       
        // If segment of this node is a part of given
        // range, then return the Pdt of the segment
        if(qs <= ss && qe >= se)
        {
            return st[si];
        }
       
        // If segment of this node is outside
        // the given range
        if(se < qs || ss > qe)
        {
            return 1;
        }
       
        // If a part of this segment overlaps
        // with the given range
        int mid=getMid(ss, se);
        return (getPdtUtil(st, ss, mid, qs,qe, 2 * si + 1) % mod *
                getPdtUtil(st, mid + 1, se, qs,qe, 2 * si + 2) % mod) % mod;
    }
   
    /*
    * A recursive function to update the nodes which have
    * the given index in their range. The following are
    * parameters
    * st, si, ss and se are same as getPdtUtil()
    * i --> index of the element to be updated.
    *        This index is in input array.
    */
    public static void updateValueUtil(int[] st, int ss,
                                       int se, int i,
                                       int prev_val,
                                       int new_val, int si)
    {
       
        // Base Case: If the input index lies outside
        // the range of this segment
        if(i < ss || i > se)
        {
            return;
        }
       
        // If the input index is in range of this node, then
        // update the value of the node and its children
        st[si] = (st[si] * new_val) / prev_val;
        if (se != ss)
        {
            int mid = getMid(ss, se);
            updateValueUtil(st, ss, mid, i, prev_val,new_val, 2 * si + 1);
            updateValueUtil(st, mid + 1, se, i, prev_val,new_val, 2 * si + 2);
        }
    }
   
    // The function to update a value in input array
    // and segment tree. It uses updateValueUtil() to
    // update the value in segment tree
    public static void updateValue(int[] arr, int[] st,
                                   int n,int i, int new_val)
    {
       
        // Check for erroneous input index
        if(i < 0 || i > n - 1)
        {
            Console.WriteLine("Invalid Input");
            return;
        }
        int temp = arr[i];
       
        // Update the value in array
        arr[i] = new_val;
       
        // Update the values of nodes in segment tree
        updateValueUtil(st, 0, n - 1, i, temp, new_val, 0);
         
    }
   
    // Return Pdt of elements in range from index qs
    // (query start)to qe (query end). It mainly
    // uses getPdtUtil()
    public static int getPdt(int[] st, int n, int qs, int qe)
    {
       
        // Check for erroneous input values
        if(qs < 0 || qe > n - 1 || qs > qe)
        {
            Console.WriteLine("Invalid Input");
            return -1;
        }
        return getPdtUtil(st, 0, n - 1, qs, qe, 0);
    }
   
    // A recursive function that constructs Segment Tree
    // for array[ss..se]. si is index of current node
    // in segment tree st
    public static int constructSTUtil(int[] arr, int ss,
                                      int se,int[] st, int si)
    {
       
        // If there is one element in array, store it
        // in current node of segment tree and return
        if (ss == se)
        {
            st[si] = arr[ss];
            return arr[ss];
        }
       
        // If there are more than one elements, then
        // recur for left and right subtrees and store
        // the Pdt of values in this node
        int mid = getMid(ss, se);
        st[si] = (constructSTUtil(arr, ss, mid, st, si * 2 + 1) % mod *
                  constructSTUtil(arr, mid + 1, se, st,si * 2 + 2) % mod) % mod;
        return st[si];
    }
    /*
    * Function to construct segment tree from
    * given array. This function allocates memory
    * for segment tree and calls constructSTUtil()
    * to fill the allocated memory
    */
    public static int[] constructST(int[] arr, int n)
    {
       
        // Allocate memory for segment tree
  
        // Height of segment tree
        int x = (int)(Math.Ceiling(Math.Log(n) /Math.Log(2)));
       
        // Maximum size of segment tree
        int max_size = 2 * (int)Math.Pow(2, x) - 1;
       
        // Allocate memory
        int[] st = new int[max_size];
       
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, st, 0);
       
        // Return the constructed segment tree
        return st;
    }
   
    // Driver code
    static public void Main ()
    {
       int[] arr = { 1, 2, 3, 4, 5, 6 };
       int n = arr.Length;
       
       // Build segment tree from given array
       int[] st = constructST(arr, n);
       
       // Print Product of values in array from
        // index 1 to 3
       Console.WriteLine("Product of values in " +
                         "given range = " + getPdt(st, n, 1, 3));
       
       // Update: set arr[1] = 10 and update
        // corresponding segment tree nodes
       updateValue(arr, st, n, 1, 10);
       
       // Find Product after the value is updated
       Console.WriteLine("Updated Product of values " +
                         "in given range = " + getPdt(st, n, 1, 3));
    }
}
 
// This code is contributed by avanitrachhadiya2155

Javascript

<script>
 
// JavaScript program to
// show segment tree operations
// like construction, query and update
     
let mod = 1000000000;
 
// A utility function to get the middle
// index from corner indexes.
function getMid(s,e)
{
    return s + Math.floor((e - s) / 2);
}
 
/*
 * A recursive function to get the Pdt of values
 * in given range of the array.
 * The following are parameters for this function.
 *
 * st --> Pointer to segment tree
 * si --> Index of current node in the segment tree.
 *        Initially 0 is passed as root is always
 *        at index 0
 * ss & se --> Starting and ending indexes of the
 *             segment represented by current node,
 *             i.e., st[si]
 * qs & qe --> Starting and ending indexes of query range
 */
function getPdtUtil(st,ss,se,qs,qe,si)
{
    // If segment of this node is a part of given
    // range, then return the Pdt of the segment
    if (qs <= ss && qe >= se)
        return st[si];
  
    // If segment of this node is outside
    // the given range
    if (se < qs || ss > qe)
        return 1;
  
    // If a part of this segment overlaps
    // with the given range
    let mid = getMid(ss, se);
    return (getPdtUtil(st, ss, mid, qs,
                       qe, 2 * si + 1) % mod *
           getPdtUtil(st, mid + 1, se, qs,
                      qe, 2 * si + 2) % mod) % mod;
}
 
/*
 * A recursive function to update the nodes which have
 * the given index in their range. The following are
 * parameters
 * st, si, ss and se are same as getPdtUtil()
 * i --> index of the element to be updated.
 *        This index is in input array.
 */
function updateValueUtil(st,ss,se,i,prev_val,new_val,si)
{
    // Base Case: If the input index lies outside
    // the range of this segment
    if (i < ss || i > se)
        return;
  
    // If the input index is in range of this node, then
    // update the value of the node and its children
    st[si] = Math.floor((st[si] * new_val) / prev_val);
    if (se != ss)
    {
        let mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, prev_val,
                        new_val, 2 * si + 1);
        updateValueUtil(st, mid + 1, se, i, prev_val,
                        new_val, 2 * si + 2);
    }
}
 
// The function to update a value in input array
// and segment tree. It uses updateValueUtil() to
// update the value in segment tree
function updateValue(arr,st,n,i,new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        document.write("Invalid Input<br>");
        return;
    }
    let temp = arr[i];
  
    // Update the value in array
    arr[i] = new_val;
  
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i,
                    temp, new_val, 0);
}
 
// Return Pdt of elements in range from index qs
// (query start)to qe (query end). It mainly
// uses getPdtUtil()
function getPdt(st,n,qs,qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe)
    {
        document.write("Invalid Input<br>");
        return -1;
    }
  
    return getPdtUtil(st, 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment Tree
// for array[ss..se]. si is index of current node
// in segment tree st
function constructSTUtil(arr,ss,se,st,si)
{
    // If there is one element in array, store it
    // in current node of segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
  
    // If there are more than one elements, then
    // recur for left and right subtrees and store
    // the Pdt of values in this node
    let mid = getMid(ss, se);
    st[si] = (constructSTUtil(arr, ss, mid, st,
                              si * 2 + 1) % mod *
              constructSTUtil(arr, mid + 1, se, st,
                              si * 2 + 2) % mod) % mod;
    return st[si];
}
 
/*
 * Function to construct segment tree from
 * given array. This function allocates memory
 * for segment tree and calls constructSTUtil()
 * to fill the allocated memory
 */
function constructST(arr,n)
{
    // Allocate memory for segment tree
  
    // Height of segment tree
    let x = (Math.ceil(Math.log(n) /
                            Math.log(2)));
  
    // Maximum size of segment tree
    let max_size = 2 * Math.pow(2, x) - 1;
  
    // Allocate memory
    let st = new Array(max_size);
  
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n - 1, st, 0);
  
    // Return the constructed segment tree
    return st;
}
 
// Driver code
let arr=[1, 2, 3, 4, 5, 6 ];
let n = arr.length;
// Build segment tree from given array
let st = constructST(arr, n);
// Print Product of values in array from
// index 1 to 3
document.write("Product of values in " +
                  "given range = ",
                  getPdt(st, n, 1, 3)+"<br>");
 
// Update: set arr[1] = 10 and update
// corresponding segment tree nodes
updateValue(arr, st, n, 1, 10);
 
// Find Product after the value is updated
document.write("Updated Product of values " +
                  "in given range = ",
                  getPdt(st, n, 1, 3)+"<br>");
     
 
// This code is contributed by patel2127
 
</script>

Producción: 

Product of values in given range = 24
Updated Product of values in given range = 120

Publicación traducida automáticamente

Artículo escrito por sahilkhoslaa y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *