Dado un número muy grande, la tarea es escribir un programa para calcular su cuadrado.
Ejemplos:
Entrada: 9999
Salida: 99980001
9999*9999 = 99980001Entrada: 45454545
Salida: 2066115661157025
45454545*45454545 = 2066115661157025
Enfoque ingenuo : un enfoque ingenuo es calcular los cuadrados multiplicando el número por sí mismo. Pero en C++, si la entrada es un número grande, el cuadrado resultante se desbordará.
Enfoque eficiente : un enfoque eficiente es almacenar el número como strings y realizar la multiplicación de dos números grandes .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to multiply two numbers // represented as strings. #include <bits/stdc++.h> using namespace std; // Multiplies str1 and str2, and prints result. string multiply(string num1, string num2) { int n1 = num1.size(); int n2 = num2.size(); if (n1 == 0 || n2 == 0) return "0"; // will keep the result number in vector // in reverse order vector<int> result(n1 + n2, 0); // Below two indexes are used to find positions // in result. int i_n1 = 0; int i_n2 = 0; // Go from right to left in num1 for (int i = n1 - 1; i >= 0; i--) { int carry = 0; int n1 = num1[i] - '0'; // To shift position to left after every // multiplication of a digit in num2 i_n2 = 0; // Go from right to left in num2 for (int j = n2 - 1; j >= 0; j--) { // Take current digit of second number int n2 = num2[j] - '0'; // Multiply with current digit of first number // and add result to previously stored result // at current position. int sum = n1 * n2 + result[i_n1 + i_n2] + carry; // Carry for next iteration carry = sum / 10; // Store result result[i_n1 + i_n2] = sum % 10; i_n2++; } // store carry in next cell if (carry > 0) result[i_n1 + i_n2] += carry; // To shift position to left after every // multiplication of a digit in num1. i_n1++; } // ignore '0's from the right int i = result.size() - 1; while (i >= 0 && result[i] == 0) i--; // If all were '0's - means either both or // one of num1 or num2 were '0' if (i == -1) return "0"; // generate the result string string s = ""; while (i >= 0) s += std::to_string(result[i--]); return s; } // Driver code int main() { string str1 = "454545454545454545"; cout << multiply(str1, str1); return 0; }
Java
// Java program to multiply two numbers // represented as strings. class GFG { // Multiplies str1 and str2, and prints result. public static String multiply(String num1, String num2) { int n1 = num1.length(); int n2 = num2.length(); if (n1 == 0 || n2 == 0) return "0"; // will keep the result number in vector // in reverse order int[] result = new int[n1 + n2]; // Below two indexes are used to find positions // in result. int i_n1 = 0; int i_n2 = 0; // Go from right to left in num1 for (int i = n1 - 1; i >= 0; i--) { int carry = 0; int n_1 = num1.charAt(i) - '0'; // To shift position to left after every // multiplication of a digit in num2 i_n2 = 0; // Go from right to left in num2 for (int j = n2 - 1; j >= 0; j--) { // Take current digit of second number int n_2 = num2.charAt(j) - '0'; // Multiply with current digit of first number // and add result to previously stored result // at current position. int sum = n_1 * n_2 + result[i_n1 + i_n2] + carry; // Carry for next iteration carry = sum / 10; // Store result result[i_n1 + i_n2] = sum % 10; i_n2++; } // store carry in next cell if (carry > 0) result[i_n1 + i_n2] += carry; // To shift position to left after every // multiplication of a digit in num1. i_n1++; } // ignore '0's from the right int i = result.length - 1; while (i >= 0 && result[i] == 0) i--; // If all were '0's - means either both or // one of num1 or num2 were '0' if (i == -1) return "0"; // generate the result string String s = ""; while (i >= 0) s += Integer.toString(result[i--]); return s; } // Driver code public static void main(String[] args) { String str1 = "454545454545454545"; System.out.println(multiply(str1, str1)); } } // This code is contributed by // sanjeev2552
Python3
# Python3 program to multiply two numbers # represented as strings. # Multiplies str1 and str2, and prints result. def multiply(num1, num2): n1 = len(num1) n2 = len(num2) if (n1 == 0 or n2 == 0): return "0" # Will keep the result number in vector # in reverse order result = [0] * (n1 + n2) # Below two indexes are used to # find positions in result. i_n1 = 0 i_n2 = 0 # Go from right to left in num1 for i in range(n1 - 1, -1, -1): carry = 0 n_1 = ord(num1[i]) - ord('0') # To shift position to left after every # multiplication of a digit in num2 i_n2 = 0 # Go from right to left in num2 for j in range(n2 - 1, -1, -1): # Take current digit of second number n_2 = ord(num2[j]) - ord('0') # Multiply with current digit of first number # and add result to previously stored result # at current position. sum = n_1 * n_2 + result[i_n1 + i_n2] + carry # Carry for next iteration carry = sum // 10 # Store result result[i_n1 + i_n2] = sum % 10 i_n2 += 1 # Store carry in next cell if (carry > 0): result[i_n1 + i_n2] += carry # To shift position to left after every # multiplication of a digit in num1. i_n1 += 1 # Ignore '0's from the right i = len(result) - 1 while (i >= 0 and result[i] == 0): i -= 1 # If all were '0's - means either both or # one of num1 or num2 were '0' if (i == -1): return "0" # Generate the result string s = "" while (i >= 0): s += str(result[i]) i -= 1 return s # Driver code if __name__ == "__main__": str1 = "454545454545454545" print(multiply(str1, str1)) # This code is contributed by chitranayal
C#
// C# program to multiply two numbers // represented as strings. using System; using System.Collections.Generic; class GFG { // Multiplies str1 and str2, // and prints result. public static String multiply(String num1, String num2) { int n1 = num1.Length; int n2 = num2.Length; if (n1 == 0 || n2 == 0) return "0"; // will keep the result number in vector // in reverse order int[] result = new int[n1 + n2]; // Below two indexes are used to // find positions in result. int i_n1 = 0; int i_n2 = 0; int i = 0; // Go from right to left in num1 for (i = n1 - 1; i >= 0; i--) { int carry = 0; int n_1 = num1[i] - '0'; // To shift position to left after every // multiplication of a digit in num2 i_n2 = 0; // Go from right to left in num2 for (int j = n2 - 1; j >= 0; j--) { // Take current digit of second number int n_2 = num2[j] - '0'; // Multiply with current digit of first number // and add result to previously stored result // at current position. int sum = n_1 * n_2 + result[i_n1 + i_n2] + carry; // Carry for next iteration carry = sum / 10; // Store result result[i_n1 + i_n2] = sum % 10; i_n2++; } // store carry in next cell if (carry > 0) result[i_n1 + i_n2] += carry; // To shift position to left after every // multiplication of a digit in num1. i_n1++; } // ignore '0's from the right i = result.Length - 1; while (i >= 0 && result[i] == 0) i--; // If all were '0's - means either both or // one of num1 or num2 were '0' if (i == -1) return "0"; // generate the result string String s = ""; while (i >= 0) s += (result[i--]).ToString(); return s; } // Driver code public static void Main(String[] args) { String str1 = "454545454545454545"; Console.WriteLine(multiply(str1, str1)); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript program to multiply two numbers // represented as strings. // Multiplies str1 and str2, and prints result. function multiply(num1,num2) { let n1 = num1.length; let n2 = num2.length; if (n1 == 0 || n2 == 0) return "0"; // will keep the result number in vector // in reverse order let result = new Array(n1 + n2); for(let i=0;i<result.length;i++) { result[i]=0; } // Below two indexes are used to find positions // in result. let i_n1 = 0; let i_n2 = 0; // Go from right to left in num1 for (let i = n1 - 1; i >= 0; i--) { let carry = 0; let n_1 = num1[i].charCodeAt(0) - '0'.charCodeAt(0); // To shift position to left after every // multiplication of a digit in num2 i_n2 = 0; // Go from right to left in num2 for (let j = n2 - 1; j >= 0; j--) { // Take current digit of second number let n_2 = num2[j].charCodeAt(0) - '0'.charCodeAt(0); // Multiply with current digit of first number // and add result to previously stored result // at current position. let sum = n_1 * n_2 + result[i_n1 + i_n2] + carry; // Carry for next iteration carry = Math.floor(sum / 10); // Store result result[i_n1 + i_n2] = sum % 10; i_n2++; } // store carry in next cell if (carry > 0) result[i_n1 + i_n2] += carry; // To shift position to left after every // multiplication of a digit in num1. i_n1++; } // ignore '0's from the right let i = result.length - 1; while (i >= 0 && result[i] == 0) i--; // If all were '0's - means either both or // one of num1 or num2 were '0' if (i == -1) return "0"; // generate the result string let s = ""; while (i >= 0) s += (result[i--]).toString(); return s; } // Driver code let str1 = "454545454545454545"; document.write(multiply(str1, str1)); // This code is contributed by avanitrachhadiya2155 </script>
206611570247933883884297520661157025
Publicación traducida automáticamente
Artículo escrito por AdityaVerma1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA