Dado un árbol de N Nodes y N-1 aristas. También dado un entero M y un Node, la tarea es imprimir el M-ésimo Node en el DFS del subárbol de un Node determinado para consultas múltiples.
Nota : M no será mayor que el número de Nodes en el subárbol del Node dado.
Entrada: M = 3, Node = 1
Salida: 4
En el ejemplo anterior, si se da 1 como Node, entonces el DFS del subárbol será 1 2 4 6 7 5 3 , por lo tanto, si M es 3, entonces el tercer Node es 4Entrada: M = 4, Node = 2
Salida: 7
Si se da 2 como Node, entonces el DFS del subárbol será 2 4 6 7 5. Por lo tanto, si M es 4, entonces el cuarto Node es 7.
Acercarse:
- Agregue los bordes entre los Nodes en una lista de adyacencia.
- Llame a la función DFS para generar el DFS del árbol completo.
- Use una array under[] para almacenar la altura del subárbol debajo del Node dado, incluido el Node.
- En la función DFS, siga incrementando el tamaño del subárbol en cada llamada recursiva.
- Marque el índice de Node en el DFS de completo usando hashing.
- Sea ind el índice del Node dado en el DFS del árbol , entonces el M-ésimo Node estará en el índice ind + M -1 ya que el DFS de un subárbol de un Node siempre será un subarreglo contiguo a partir del Node.
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program for Queries // for DFS of subtree of a node in a tree #include <bits/stdc++.h> using namespace std; const int N = 100000; // Adjacency list to store the // tree nodes connection vector<int> v[N]; // stores the index of node in DFS unordered_map<int, int> mp; // stores the index of node in // original node vector<int> a; // Function to call DFS and count nodes // under that subtree void dfs(int under[], int child, int parent) { // stores the DFS of tree a.push_back(child); // height of subtree under[child] = 1; // iterate for children for (auto it : v[child]) { // if not equal to parent // so that it does not traverse back if (it != parent) { // call DFS for subtree dfs(under, it, child); // add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node int printnodeDFSofSubtree(int node, int under[], int m) { // index of node in the original DFS int ind = mp[node]; // height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree void addEdge(int x, int y) { v[x].push_back(y); v[y].push_back(x); } // Marks the index of node in original DFS void markIndexDfs() { int size = a.size(); // marks the index for (int i = 0; i < size; i++) { mp[a[i]] = i; } } // Driver Code int main() { int n = 7; // add edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // array to store the height of subtree // of every node in a tree int under[n + 1]; // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); int m = 3; // Query 1 cout << printnodeDFSofSubtree(1, under, m) << endl; // Query 2 m = 4; cout << printnodeDFSofSubtree(2, under, m); return 0; }
Java
// Java program for Queries for // DFS of subtree of a node in a tree import java.util.*; class GFG{ // Adjacency list to store the // tree nodes connection static ArrayList<ArrayList<Integer>> v; // Stores the index of node in DFS static HashMap<Integer, Integer> mp; // Stores the index of node in // original node static ArrayList<Integer> a; // Function to call DFS and count nodes // under that subtree static void dfs(int under[], int child, int parent) { // Stores the DFS of tree a.add(child); // Height of subtree under[child] = 1; // iterate for children for(int it : v.get(child)) { // If not equal to parent // so that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node static int printnodeDFSofSubtree(int node, int under[], int m) { // Index of node in the original DFS int ind = mp.get(node); // Height of subtree of node return a.get(ind + m - 1); } // Function to add edges to a tree static void addEdge(int x, int y) { v.get(x).add(y); v.get(y).add(x); } // Marks the index of node in original DFS static void markIndexDfs() { int size = a.size(); // Marks the index for(int i = 0; i < size; i++) { mp.put(a.get(i), i); } } // Driver Code public static void main(String[] args) { int n = 7; mp = new HashMap<>(); v = new ArrayList<>(); a = new ArrayList<>(); for(int i = 0; i < n + 1; i++) v.add(new ArrayList<>()); // Add edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // Array to store the height of subtree // of every node in a tree int under[] = new int[n + 1]; // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); int m = 3; // Query 1 System.out.println( printnodeDFSofSubtree(1, under, m)); // Query 2 m = 4; System.out.println( printnodeDFSofSubtree(2, under, m)); } } // This code is contributed by jrishabh99
Python3
# Python3 program for Queries # for DFS of subtree of a node in a tree N = 100000 # Adjacency list to store the # tree nodes connection v = [[]for i in range(N)] # stores the index of node in DFS mp = {} # stores the index of node in # original node a = [] # Function to call DFS and count nodes # under that subtree def dfs(under, child, parent): # stores the DFS of tree a.append(child) # height of subtree under[child] = 1 # iterate for children for it in v[child]: # if not equal to parent # so that it does not traverse back if (it != parent): # call DFS for subtree dfs(under, it, child) # add the height under[child] += under[it] # Function to return the DFS of subtree of node def printnodeDFSofSubtree(node, under, m): # index of node in the original DFS ind = mp[node] # height of subtree of node return a[ind + m - 1] # Function to add edges to a tree def addEdge(x, y): v[x].append(y) v[y].append(x) # Marks the index of node in original DFS def markIndexDfs(): size = len(a) # marks the index for i in range(size): mp[a[i]] = i # Driver Code n = 7 # add edges of a tree addEdge(1, 2) addEdge(1, 3) addEdge(2, 4) addEdge(2, 5) addEdge(4, 6) addEdge(4, 7) # array to store the height of subtree # of every node in a tree under = [0]*(n + 1) # Call the function DFS to generate the DFS dfs(under, 1, 0) # Function call to mark the index of node markIndexDfs() m = 3 # Query 1 print(printnodeDFSofSubtree(1, under, m)) # Query 2 m = 4 print(printnodeDFSofSubtree(2, under, m)) # This code is contributed by SHUBHAMSINGH10
C#
// C# program for Queries for DFS // of subtree of a node in a tree using System; using System.Collections.Generic; class GFG{ // Adjacency list to store the // tree nodes connection static List<List<int>> v; // Stores the index of node in DFS static Dictionary<int, int> mp; // Stores the index of node in // original node static List<int> a; // Function to call DFS and count nodes // under that subtree static void dfs(int []under, int child, int parent) { // Stores the DFS of tree a.Add(child); // Height of subtree under[child] = 1; // Iterate for children foreach(int it in v[child]) { // If not equal to parent so // that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Add the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node static int printnodeDFSofSubtree(int node, int []under, int m) { // Index of node in the original DFS int ind = mp[node]; // Height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree static void addEdge(int x, int y) { v[x].Add(y); v[y].Add(x); } // Marks the index of node in original DFS static void markIndexDfs() { int size = a.Count; // Marks the index for(int i = 0; i < size; i++) { mp.Add(a[i], i); } } // Driver Code public static void Main(String[] args) { int n = 7; mp = new Dictionary<int, int>(); v = new List<List<int>>(); a = new List<int>(); for(int i = 0; i < n + 1; i++) v.Add(new List<int>()); // Add edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // Array to store the height of subtree // of every node in a tree int []under = new int[n + 1]; // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); int m = 3; // Query 1 Console.WriteLine( printnodeDFSofSubtree(1, under, m)); // Query 2 m = 4; Console.WriteLine( printnodeDFSofSubtree(2, under, m)); } } // This code is contributed by Amit Katiyar
Javascript
<script> // Javascript program for Queries for DFS // of subtree of a node in a tree // Adjacency list to store the // tree nodes connection var v = []; // Stores the index of node in DFS var mp = new Map(); // Stores the index of node in // original node var a = []; // Function to call DFS and count nodes // under that subtree function dfs(under, child, parent) { // Stores the DFS of tree a.push(child); // Height of subtree under[child] = 1; // Iterate for children for(var it of v[child]) { // If not equal to parent so // that it does not traverse back if (it != parent) { // Call DFS for subtree dfs(under, it, child); // Push the height under[child] += under[it]; } } } // Function to return the DFS of subtree of node function printnodeDFSofSubtree(node, under, m) { // Index of node in the original DFS var ind = mp.get(node); // Height of subtree of node return a[ind + m - 1]; } // Function to add edges to a tree function addEdge(x, y) { v[x].push(y); v[y].push(x); } // Marks the index of node in original DFS function markIndexDfs() { var size = a.length; // Marks the index for(var i = 0; i < size; i++) { mp.set(a[i], i); } } // Driver Code var n = 7; mp = new Map(); v = []; a = []; for(var i = 0; i < n + 1; i++) v.push(Array()); // Push edges of a tree addEdge(1, 2); addEdge(1, 3); addEdge(2, 4); addEdge(2, 5); addEdge(4, 6); addEdge(4, 7); // Array to store the height of subtree // of every node in a tree var under = new Array(n + 1); // Call the function DFS to generate the DFS dfs(under, 1, 0); // Function call to mark the index of node markIndexDfs(); var m = 3; // Query 1 document.write(printnodeDFSofSubtree( 1, under, m) + "<br>"); // Query 2 m = 4; document.write(printnodeDFSofSubtree( 2, under, m)); // This code is contributed by rutvik_56 </script>
Producción:
4 7
Complejidad Temporal: O(1), para el procesamiento de cada consulta.
Espacio Auxiliar: O(N)