Subárbol duplicado en árbol binario | CONJUNTO 2

Dado un árbol binario, la tarea es verificar si el árbol binario contiene un subárbol duplicado de tamaño dos o más.
 

Input:
               A
             /   \ 
           B       C
         /   \       \    
        D     E       B     
                     /  \    
                    D    E
Output: Yes
    B     
  /   \    
 D     E
is the duplicate sub-tree.

Input:
               A
             /   \ 
           B       C
         /   \
        D     E
Output: No

Enfoque: Aquí se ha discutido un enfoque basado en SFD . Se puede usar una cola para atravesar el árbol de manera bfs . Mientras atraviesa los Nodes, empuje el Node junto con sus hijos izquierdo y derecho en un mapa y si algún punto del mapa contiene duplicados, entonces el árbol contiene subárboles duplicados. Por ejemplo, si el Node es A y sus hijos son B y C, entonces ABC se insertará en el mapa. Si en algún momento se debe volver a presionar ABC, el árbol contiene subárboles duplicados.
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a binary tree node
struct Node {
    char key;
    Node *left, *right;
};
 
// A utility function to create a new node
Node* newNode(char key)
{
    Node* node = new Node;
    node->key = key;
    node->left = node->right = NULL;
    return node;
}
 
unordered_set<string> subtrees;
 
// Function that returns true if
// tree contains a duplicate subtree
// of size 2 or more
bool dupSubUtil(Node* root)
{
 
    // To store subtrees
    set<string> subtrees;
 
    // Used to traverse tree
    queue<Node*> bfs;
    bfs.push(root);
 
    while (!bfs.empty()) {
        Node* n = bfs.front();
        bfs.pop();
 
        // To store the left and the right
        // children of the current node
        char l = ' ', r = ' ';
 
        // If the node has a left child
        if (n->left != NULL) {
            l = n->left->key;
 
            // Push left node's data
            bfs.push(n->left);
        }
 
        // If the node has a right child
        if (n->right != NULL) {
            r = n->right->key;
 
            // Push right node's data
            bfs.push(n->right);
        }
 
        string subt;
        subt += n->key;
        subt += l;
        subt += r;
 
        if (l != ' ' || r != ' ') {
 
            // If this subtree count is greater than 0
            // that means duplicate exists
            if (!subtrees.insert(subt).second) {
                return true;
            }
        }
    }
    return false;
}
 
// Driver code
int main()
{
    Node* root = newNode('A');
    root->left = newNode('B');
    root->right = newNode('C');
    root->left->left = newNode('D');
    root->left->right = newNode('E');
    root->right->right = newNode('B');
    root->right->right->right = newNode('E');
    root->right->right->left = newNode('D');
 
    cout << (dupSubUtil(root) ? "Yes" : "No");
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
class GFG
{
 
// Structure for a binary tree node
static class Node
{
    char key;
    Node left, right;
};
 
// A utility function to create a new node
static Node newNode(char key)
{
    Node node = new Node();
    node.key = key;
    node.left = node.right = null;
    return node;
}
 
static HashSet<String> subtrees = new HashSet<String>();
 
// Function that returns true if
// tree contains a duplicate subtree
// of size 2 or more
static boolean dupSubUtil(Node root)
{
 
    // To store subtrees
    // HashSet<String> subtrees;
 
    // Used to traverse tree
    Queue<Node> bfs = new LinkedList<>();
    bfs.add(root);
 
    while (!bfs.isEmpty())
    {
        Node n = bfs.peek();
        bfs.remove();
 
        // To store the left and the right
        // children of the current node
        char l = ' ', r = ' ';
 
        // If the node has a left child
        if (n.left != null)
        {
            l = n.left.key;
 
            // Push left node's data
            bfs.add(n.left);
        }
 
        // If the node has a right child
        if (n.right != null)
        {
            r = n.right.key;
 
            // Push right node's data
            bfs.add(n.right);
        }
 
        String subt = "";
        subt += n.key;
        subt += l;
        subt += r;
 
        if (l != ' ' || r != ' ')
        {
 
            // If this subtree count is greater than 0
            // that means duplicate exists
            if (!subtrees.contains(subt))
            {
                return true;
            }
        }
    }
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    Node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('D');
    root.left.right = newNode('E');
    root.right.right = newNode('B');
    root.right.right.right = newNode('E');
    root.right.right.left = newNode('D');
    if (dupSubUtil(root))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by Princi Singh

Python3

# Python3 implementation of the approach
 
# Structure for a binary tree node
class newNode:
 
    # Constructor to create a new node
    def __init__(self, data):
        self.key = data
        self.left = None
        self.right = None
 
subtrees = set()
 
# Function that returns true if
# tree contains a duplicate subtree
# of size 2 or more
def dupSubUtil(root):
     
    # To store subtrees
    subtrees= set()
     
    # Used to traverse tree
    bfs = []
    bfs.append(root)
    while (len(bfs)):
        n = bfs[0]
        bfs.pop(0)
         
        # To store the left and the right
        # children of the current node
        l = ' '
        r = ' '
         
        # If the node has a left child
        if (n.left != None):
            x = n.left
            l = x.key
             
            # append left node's data
            bfs.append(n.left)
             
        # If the node has a right child
        if (n.right != None):
            x = n.right
            r = x.key
             
            # append right node's data
            bfs.append(n.right)
             
        subt=""
        subt += n.key
        subt += l
        subt += r
         
        if (l != ' ' or r != ' '):
         
            # If this subtree count is greater than 0
            # that means duplicate exists
            subtrees.add(subt)
            if (len(subtrees) > 1):
                return True
                 
    return False
 
# Driver code
 
root = newNode('A')
root.left = newNode('B')
root.right = newNode('C')
root.left.left = newNode('D')
root.left.right = newNode('E')
root.right.right = newNode('B')
root.right.right.right = newNode('E')
root.right.right.left = newNode('D')
 
if dupSubUtil(root):
    print("Yes")
else:
    print("No")
 
# This code is contributed by SHUBHAMSINGH10

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Structure for a binary tree node
public class Node
{
    public char key;
    public Node left, right;
};
 
// A utility function to create a new node
static Node newNode(char key)
{
    Node node = new Node();
    node.key = key;
    node.left = node.right = null;
    return node;
}
 
static HashSet<String> subtrees = new HashSet<String>();
 
// Function that returns true if
// tree contains a duplicate subtree
// of size 2 or more
static bool dupSubUtil(Node root)
{
 
    // To store subtrees
    // HashSet<String> subtrees;
 
    // Used to traverse tree
    Queue<Node> bfs = new Queue<Node>();
    bfs.Enqueue(root);
 
    while (bfs.Count != 0)
    {
        Node n = bfs.Peek();
        bfs.Dequeue();
 
        // To store the left and the right
        // children of the current node
        char l = ' ', r = ' ';
 
        // If the node has a left child
        if (n.left != null)
        {
            l = n.left.key;
 
            // Push left node's data
            bfs.Enqueue(n.left);
        }
 
        // If the node has a right child
        if (n.right != null)
        {
            r = n.right.key;
 
            // Push right node's data
            bfs.Enqueue(n.right);
        }
 
        String subt = "";
        subt += n.key;
        subt += l;
        subt += r;
 
        if (l != ' ' || r != ' ')
        {
 
            // If this subtree count is greater than 0
            // that means duplicate exists
            if (!subtrees.Contains(subt))
            {
                return true;
            }
        }
    }
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    Node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('D');
    root.left.right = newNode('E');
    root.right.right = newNode('B');
    root.right.right.right = newNode('E');
    root.right.right.left = newNode('D');
    if (dupSubUtil(root))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
 
// Javascript implementation of the approach
 
// Structure for a binary tree node
class Node
{
    constructor()
    {
        this.key = '';
        this.left = null;
        this.right = null;
    }
};
 
// A utility function to create a new node
function newNode(key)
{
    var node = new Node();
    node.key = key;
    node.left = node.right = null;
    return node;
}
 
var subtrees = new Set();
 
// Function that returns true if
// tree contains a duplicate subtree
// of size 2 or more
function dupSubUtil(root)
{
 
    // To store subtrees
    // HashSet<String> subtrees;
 
    // Used to traverse tree
    var bfs = [];
    bfs.push(root);
 
    while (bfs.length != 0)
    {
        var n = bfs[0];
        bfs.pop();
 
        // To store the left and the right
        // children of the current node
        var l = ' ', r = ' ';
 
        // If the node has a left child
        if (n.left != null)
        {
            l = n.left.key;
 
            // Push left node's data
            bfs.push(n.left);
        }
 
        // If the node has a right child
        if (n.right != null)
        {
            r = n.right.key;
 
            // Push right node's data
            bfs.push(n.right);
        }
 
        var subt = "";
        subt += n.key;
        subt += l;
        subt += r;
 
        if (l != ' ' || r != ' ')
        {
 
            // If this subtree count is greater than 0
            // that means duplicate exists
            if (!subtrees.has(subt))
            {
                return true;
            }
        }
    }
    return false;
}
 
// Driver code
var root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('D');
root.left.right = newNode('E');
root.right.right = newNode('B');
root.right.right.right = newNode('E');
root.right.right.left = newNode('D');
if (dupSubUtil(root))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by rrrtnx.
</script>
Producción: 

Yes

 

Complejidad de tiempo : O (n) donde N es no de Nodes en un árbol binario

Espacio Auxiliar: O(n)

Publicación traducida automáticamente

Artículo escrito por md1844 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *