Dada una string str que consta de los caracteres ‘(‘ , ‘)’ , ‘[‘ , ‘]’ , ‘{‘ y ‘}’ únicamente. La tarea es encontrar la longitud máxima de la string equilibrada después de eliminar cualquier carácter e intercambiar dos caracteres adyacentes.
Ejemplos:
Entrada: str = “))[]]((”
Salida: 6
La string se puede convertir a()[]()
Entrada: str = “{{{{{{{}”
Salida: 2
Enfoque: la idea es eliminar los paréntesis no coincidentes adicionales de la string porque no podemos generar un par equilibrado para ella e intercambiar los caracteres restantes para equilibrar la string. Por lo tanto, la respuesta es igual suma de pares de todos los paréntesis equilibrados. Tenga en cuenta que podemos mover un personaje a cualquier otro lugar mediante intercambios adyacentes.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the length of // the longest balanced sub-string int maxBalancedStr(string s) { // To store the count of parentheses int open1 = 0, close1 = 0; int open2 = 0, close2 = 0; int open3 = 0, close3 = 0; // Traversing the string for (int i = 0; i < s.length(); i++) { // Check type of parentheses and // incrementing count for it switch (s[i]) { case '(': open1++; break; case ')': close1++; break; case '{': open2++; break; case '}': close2++; break; case '[': open3++; break; case ']': close3++; break; } } // Sum all pair of balanced parentheses int maxLen = 2 * min(open1, close1) + 2 * min(open2, close2) + 2 * min(open3, close3); return maxLen; } // Driven code int main() { string s = "))[]](("; cout << maxBalancedStr(s); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the length of // the longest balanced sub-string static int maxBalancedStr(String s) { // To store the count of parentheses int open1 = 0, close1 = 0; int open2 = 0, close2 = 0; int open3 = 0, close3 = 0; // Traversing the string for (int i = 0; i < s.length(); i++) { // Check type of parentheses and // incrementing count for it switch (s.charAt(i)) { case '(': open1++; break; case ')': close1++; break; case '{': open2++; break; case '}': close2++; break; case '[': open3++; break; case ']': close3++; break; } } // Sum all pair of balanced parentheses int maxLen = 2 * Math.min(open1, close1) + 2 * Math.min(open2, close2) + 2 * Math.min(open3, close3); return maxLen; } // Driven code public static void main(String[] args) { String s = "))[]](("; System.out.println(maxBalancedStr(s)); } } // This code is contributed by Code_Mech.
Python3
# Python 3 implementation of the approach # Function to return the length of # the longest balanced sub-string def maxBalancedStr(s): # To store the count of parentheses open1 = 0 close1 = 0 open2 = 0 close2 = 0 open3 = 0 close3 = 0 # Traversing the string for i in range(len(s)): # Check type of parentheses and # incrementing count for it if(s[i] == '('): open1 += 1 continue if s[i] == ')': close1 += 1 continue if s[i] == '{': open2 += 1 continue if s[i] == '}': close2 += 1 continue if s[i] == '[': open3 += 1 continue if s[i] == ']': close3 += 1 continue # Sum all pair of balanced parentheses maxLen = (2 * min(open1, close1) + 2 * min(open2, close2) + 2 * min(open3, close3)) return maxLen # Driven code if __name__ == '__main__': s = "))[]]((" print(maxBalancedStr(s)) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation of the approach using System; class GFG { // Function to return the length of // the longest balanced sub-string static int maxBalancedStr(string s) { // To store the count of parentheses int open1 = 0, close1 = 0; int open2 = 0, close2 = 0; int open3 = 0, close3 = 0; // Traversing the string for (int i = 0; i < s.Length; i++) { // Check type of parentheses and // incrementing count for it switch (s[i]) { case '(': open1++; break; case ')': close1++; break; case '{': open2++; break; case '}': close2++; break; case '[': open3++; break; case ']': close3++; break; } } // Sum all pair of balanced parentheses int maxLen = 2 * Math.Min(open1, close1) + 2 * Math.Min(open2, close2) + 2 * Math.Min(open3, close3); return maxLen; } // Driver code public static void Main() { string s = "))[]](("; Console.WriteLine(maxBalancedStr(s)); } } // This code is contributed by Code_Mech.
PHP
<?php // PHP implementation of the approach // Function to return the length of // the longest balanced sub-string function maxBalancedStr($s) { // To store the count of parentheses $open1 = 0; $close1 = 0; $open2 = 0; $close2 = 0; $open3 = 0; $close3 = 0; // Traversing the string for ($i = 0; $i < strlen($s); $i++) { // Check type of parentheses and // incrementing count for it switch ($s[$i]) { case '(': $open1++; break; case ')': $close1++; break; case '{': $open2++; break; case '}': $close2++; break; case '[': $open3++; break; case ']': $close3++; break; } } // Sum all pair of balanced parentheses $maxLen = 2 * min($open1, $close1) + 2 * min($open2, $close2) + 2 * min($open3, $close3); return $maxLen; } // Driven code { $s = "))[]](("; echo(maxBalancedStr($s)); } // This code is contributed by Code_Mech.
Javascript
<script> // Javascript implementation of the approach // Function to return the length of // the longest balanced sub-string function maxBalancedStr( s) { // To store the count of parentheses var open1 = 0, close1 = 0; var open2 = 0, close2 = 0; var open3 = 0, close3 = 0; // Traversing the string for (i = 0; i < s.length; i++) { // Check type of parentheses and // incrementing count for it switch (s.charAt(i)) { case '(': open1++; break; case ')': close1++; break; case '{': open2++; break; case '}': close2++; break; case '[': open3++; break; case ']': close3++; break; } } // Sum all pair of balanced parentheses var maxLen = 2 * Math.min(open1, close1) + 2 * Math.min(open2, close2) + 2 * Math.min(open3, close3); return maxLen; } // Driven code var s = "))[]](("; document.write(maxBalancedStr(s)); // This code contributed by gauravrajput1 </script>
6
Publicación traducida automáticamente
Artículo escrito por Sairahul Jella y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA