Dada una array arr[] de N enteros positivos distintos de cero y un entero K , la tarea es encontrar el XOR de los K números primos y compuestos más grandes.
Ejemplos:
Entrada: arr[] = {4, 2, 12, 13, 5, 19}, K = 3
Salida:
Prime XOR = 27
Composite XOR = 8
5, 13 y 19 son los tres primos máximos
de la array dada y 5 ^ 13 ^ 19 = 27.
Solo hay 2 compuestos en la array, es decir, 4 y 12.
Y 4 ^ 12 = 8
Entrada: arr[] = {1, 2, 3, 4, 5, 6, 7}, K = 1
Salida:
Prime XOR = 7
Compuesto XOR = 6
Enfoque: el uso de la criba de Eratóstenes genera un vector booleano hasta el tamaño del elemento máximo de la array que se puede usar para verificar si un número es primo o no.
Ahora recorra la array e inserte todos los números que son primos en un montón máximo maxHeapPrime y todos los números compuestos en un montón máximo maxHeapNonPrime .
Ahora, extraiga los elementos K superiores de ambos montones máximos y tome el xor de estos elementos.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function for Sieve of Eratosthenes vector<bool> SieveOfEratosthenes(int max_val) { // Create a boolean vector "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. vector<bool> prime(max_val + 1, true); // Set 0 and 1 as non-primes as // they don't need to be // counted as prime numbers prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) prime[i] = false; } } return prime; } // Function that calculates the xor // of k smallest and k // largest prime numbers in an array void kMaxXOR(int arr[], int n, int k) { // Find maximum value in the array int max_val = *max_element(arr, arr + n); // Use sieve to find all prime numbers // less than or equal to max_val vector<bool> prime = SieveOfEratosthenes(max_val); // Min Heaps to store the max K prime // and composite numbers priority_queue<int, vector<int>, greater<int> > minHeapPrime, minHeapNonPrime; for (int i = 0; i < n; i++) { // If current element is prime if (prime[arr[i]]) { // Min heap will only store k elements if (minHeapPrime.size() < k) minHeapPrime.push(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapPrime.top() < arr[i]) { minHeapPrime.pop(); minHeapPrime.push(arr[i]); } } // If current element is composite else if (arr[i] != 1) { // Heap will only store k elements if (minHeapNonPrime.size() < k) minHeapNonPrime.push(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapNonPrime.top() < arr[i]) { minHeapNonPrime.pop(); minHeapNonPrime.push(arr[i]); } } } long long int primeXOR = 0, nonPrimeXor = 0; while (k--) { // Calculate the xor if (minHeapPrime.size() > 0) { primeXOR ^= minHeapPrime.top(); minHeapPrime.pop(); } if (minHeapNonPrime.size() > 0) { nonPrimeXor ^= minHeapNonPrime.top(); minHeapNonPrime.pop(); } } cout << "Prime XOR = " << primeXOR << "\n"; cout << "Composite XOR = " << nonPrimeXor << "\n"; } // Driver code int main() { int arr[] = { 4, 2, 12, 13, 5, 19 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; kMaxXOR(arr, n, k); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function for Sieve of Eratosthenes static boolean[] SieveOfEratosThenes(int max_val) { // Create a boolean vector "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. boolean[] prime = new boolean[max_val + 1]; Arrays.fill(prime, true); // Set 0 and 1 as non-primes as // they don't need to be // counted as prime numbers prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p]) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) prime[i] = false; } } return prime; } // Function that calculates the xor // of k smallest and k // largest prime numbers in an array static void kMinXOR(Integer[] arr, int n, int k) { // Find maximum value in the array int max_val = Collections.max(Arrays.asList(arr)); // Use sieve to find all prime numbers // less than or equal to max_val boolean[] prime = SieveOfEratosThenes(max_val); // Min Heaps to store the max K prime // and composite numbers PriorityQueue<Integer> minHeapPrime = new PriorityQueue<>(); PriorityQueue<Integer> minHeapNonPrime = new PriorityQueue<>(); for (int i = 0; i < n; i++) { // If current element is prime if (prime[arr[i]]) { // Min heap will only store k elements if (minHeapPrime.size() < k) minHeapPrime.add(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapPrime.peek() < arr[i]) { minHeapPrime.poll(); minHeapPrime.add(arr[i]); } } // If current element is composite else if (arr[i] != -1) { // Heap will only store k elements if (minHeapNonPrime.size() < k) minHeapNonPrime.add(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapNonPrime.peek() < arr[i]) { minHeapNonPrime.poll(); minHeapNonPrime.add(arr[i]); } } } long primeXOR = 0, nonPrimeXor = 0; while (k-- > 0) { // Calculate the xor if (minHeapPrime.size() > 0) { primeXOR ^= minHeapPrime.peek(); minHeapPrime.poll(); } if (minHeapNonPrime.size() > 0) { nonPrimeXor ^= minHeapNonPrime.peek(); minHeapNonPrime.poll(); } } System.out.println("Prime XOR = " + primeXOR); System.out.println("Composite XOR = " + nonPrimeXor); } // Driver Code public static void main(String[] args) { Integer[] arr = { 4, 2, 12, 13, 5, 19 }; int n = arr.length; int k = 3; kMinXOR(arr, n, k); } } // This code is contributed by // sanjeev2552
Python3
# Python implementation of above approach import heapq # Function for Sieve of Eratosthenes def SieveOfEratosthenes(max_val: int) -> list: # Create a boolean vector "prime[0..n]". A # value in prime[i] will finally be false # if i is Not a prime, else true. prime = [True] * (max_val + 1) # Set 0 and 1 as non-primes as # they don't need to be # counted as prime numbers prime[0] = False prime[1] = False p = 2 while p * p <= max_val: # If prime[p] is not changed, then # it is a prime if prime[p]: # Update all multiples of p for i in range(p * 2, max_val + 1, p): prime[i] = False p += 1 return prime # Function that calculates the xor # of k smallest and k # largest prime numbers in an array def kMaxXOR(arr: list, n: int, k: int): # Find maximum value in the array max_val = max(arr) # Use sieve to find all prime numbers # less than or equal to max_val prime = SieveOfEratosthenes(max_val) # Min Heaps to store the max K prime # and composite numbers minHeapPrime, minHeapNonPrime = [], [] heapq.heapify(minHeapPrime) heapq.heapify(minHeapNonPrime) for i in range(n): # If current element is prime if prime[arr[i]]: # Min heap will only store k elements if len(minHeapPrime) < k: heapq.heappush(minHeapPrime, arr[i]) # If the size of min heap is K and the # top element is smaller than the current # element than it needs to be replaced # by the current element as only # max k elements are required elif heapq.nsmallest(1, minHeapPrime)[0] < arr[i]: heapq.heappop(minHeapPrime) heapq.heappush(minHeapPrime, arr[i]) # If current element is composite elif arr[i] != 1: # Heap will only store k elements if len(minHeapNonPrime) < k: heapq.heappush(minHeapNonPrime, arr[i]) # If the size of min heap is K and the # top element is smaller than the current # element than it needs to be replaced # by the current element as only # max k elements are required elif heapq.nsmallest(1, minHeapNonPrime)[0] < arr[i]: heapq.heappop(minHeapNonPrime) heapq.heappush(minHeapNonPrime, arr[i]) primeXOR = 0 nonPrimeXor = 0 while k > 0: # Calculate the xor if len(minHeapPrime) > 0: primeXOR ^= heapq.nsmallest(1, minHeapPrime)[0] heapq.heappop(minHeapPrime) if len(minHeapNonPrime) > 0: nonPrimeXor ^= heapq.nsmallest(1, minHeapNonPrime)[0] heapq.heappop(minHeapNonPrime) k -= 1 print("Prime XOR =", primeXOR) print("Composite XOR =", nonPrimeXor) # Driver Code if __name__ == "__main__": arr = [4, 2, 12, 13, 5, 19] n = len(arr) k = 3 kMaxXOR(arr, n, k) # This code is contributed by # sanjeev2552
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function for Sieve of Eratosthenes static bool[] SieveOfEratosThenes(int max_val) { // Create a boolean vector "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. bool[] prime = new bool[max_val + 1]; for(int i = 0; i < max_val + 1; i++) { prime[i] = true; } // Set 0 and 1 as non-primes as // they don't need to be // counted as prime numbers prime[0] = false; prime[1] = false; for (int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p]) { // Update all multiples of p for (int i = p * 2; i <= max_val; i += p) prime[i] = false; } } return prime; } // Function that calculates the xor // of k smallest and k // largest prime numbers in an array static void kMinXOR(int[] arr, int n, int k) { // Find maximum value in the array int max_val = Int32.MinValue; for(int i = 0; i < arr.Length; i++) { max_val = Math.Max(max_val,arr[i]); } // Use sieve to find all prime numbers // less than or equal to max_val bool[] prime = SieveOfEratosThenes(max_val); // Min Heaps to store the max K prime // and composite numbers List<int> minHeapPrime = new List<int>(); List<int> minHeapNonPrime = new List<int>(); for (int i = 0; i < n; i++) { // If current element is prime if (prime[arr[i]]) { // Min heap will only store k elements if (minHeapPrime.Count < k) { minHeapPrime.Add(arr[i]); } // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapPrime[0] < arr[i]) { minHeapPrime.RemoveAt(0); minHeapPrime.Add(arr[i]); } minHeapPrime.Sort(); } // If current element is composite else if (arr[i] != -1) { // Heap will only store k elements if (minHeapNonPrime.Count < k) minHeapNonPrime.Add(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapNonPrime[0] < arr[i]) { minHeapNonPrime.RemoveAt(0); minHeapNonPrime.Add(arr[i]); } minHeapNonPrime.Sort(); } } long primeXOR = 0, nonPrimeXor = 0; while (k-- > 0) { // Calculate the xor if (minHeapPrime.Count > 0) { primeXOR ^= minHeapPrime[0]; minHeapPrime.RemoveAt(0); } if (minHeapNonPrime.Count > 0) { nonPrimeXor ^= minHeapNonPrime[0]; minHeapNonPrime.RemoveAt(0); } } Console.WriteLine("Prime XOR = " + primeXOR); Console.WriteLine("Composite XOR = " + nonPrimeXor); } // Driver code static void Main() { int[] arr = { 4, 2, 12, 13, 5, 19 }; int n = arr.Length; int k = 3; kMinXOR(arr, n, k); } } // This code is contributed by divyesh072019.
Javascript
<script> // Javascript implementation of the approach // Function for Sieve of Eratosthenes function SieveOfEratosThenes(max_val) { // Create a boolean vector "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. let prime = new Array(max_val + 1); for(let i = 0; i < max_val + 1; i++) { prime[i] = true; } // Set 0 and 1 as non-primes as // they don't need to be // counted as prime numbers prime[0] = false; prime[1] = false; for (let p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p]) { // Update all multiples of p for (let i = p * 2; i <= max_val; i += p) prime[i] = false; } } return prime; } // Function that calculates the xor // of k smallest and k // largest prime numbers in an array function kMinXOR(arr, n, k) { // Find maximum value in the array let max_val = Number.MIN_VALUE; for(let i = 0; i < arr.length; i++) { max_val = Math.max(max_val,arr[i]); } // Use sieve to find all prime numbers // less than or equal to max_val let prime = SieveOfEratosThenes(max_val); // Min Heaps to store the max K prime // and composite numbers let minHeapPrime = []; let minHeapNonPrime = []; for (let i = 0; i < n; i++) { // If current element is prime if (prime[arr[i]]) { // Min heap will only store k elements if (minHeapPrime.length < k) { minHeapPrime.push(arr[i]); } // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapPrime[0] < arr[i]) { minHeapPrime.shift(); minHeapPrime.push(arr[i]); } minHeapPrime.sort(function(a, b){return a - b}); } // If current element is composite else if (arr[i] != -1) { // Heap will only store k elements if (minHeapNonPrime.length < k) minHeapNonPrime.push(arr[i]); // If the size of min heap is K and the // top element is smaller than the current // element than it needs to be replaced // by the current element as only // max k elements are required else if (minHeapNonPrime[0] < arr[i]) { minHeapNonPrime.shift(); minHeapNonPrime.push(arr[i]); } minHeapNonPrime.sort(function(a, b){return a - b}); } } let primeXOR = 0, nonPrimeXor = 0; while (k-- > 0) { // Calculate the xor if (minHeapPrime.length > 0) { primeXOR ^= minHeapPrime[0]; minHeapPrime.shift(); } if (minHeapNonPrime.length > 0) { nonPrimeXor ^= minHeapNonPrime[0]; minHeapNonPrime.shift(); } } document.write("Prime XOR = " + primeXOR + "</br>"); document.write("Composite XOR = " + nonPrimeXor); } let arr = [ 4, 2, 12, 13, 5, 19 ]; let n = arr.length; let k = 3; kMinXOR(arr, n, k); </script>
Prime XOR = 27 Composite XOR = 8
Publicación traducida automáticamente
Artículo escrito por NikhilRathor y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA